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Abstract 

Planning is a branch of Artificial Intelligence (AI) concerned with projecting 

courses of actions for executing tasks and reaching goals. AI Planning helps 

increase the autonomy of artificially intelligent agents and decrease the cognitive 

load burdening human planners working in challenging domains, such as the Mars 

exploration projects. Approaches to AI planning include first-principles heuristic 

search planning and case-based planning. The former conducts a heuristic-guided 

search in the solution space, while the latter generates new solutions by adapting 

solutions to previously-solved problems. 

 The ability to generate not just one solution, but a set of meaningfully diverse 

solutions to each planning problem helps cater to a wider variety of user 

preferences and needs (which it may be difficult or even unfeasible to acquire 

and/or represent in their entirety), produce viable alternative courses of action to 

fall back on in case of failure, counter varied threats in intrusion detection, render 

computer games more compelling, and provide representative samples of the vast 

search spaces of planning problems. 

This work describes a general framework for generating diverse sets of 

solutions (i.e. courses of action) to planning problems. The general diversity-aware 

planning algorithm consists of iteratively generating solutions using a composite 

candidate-solution evaluation criterion taking into account both how promising the 
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candidate solutions appear in their own right and on how likely they are to increase 

the overall diversity of the final set of solutions. This estimate of diversity is based 

on distance metrics, i.e. measures of the dissimilarity between two solutions. 

Distance metrics can be quantitative or qualitative. 

Quantitative distance measures are domain-independent. They require 

minimum knowledge engineering, but may not reflect dissimilarities that are truly 

meaningful.  

Qualitative distance metrics are domain-specific and reflect, based on the 

domain knowledge encoded within them, the kind of meaningful dissimilarities that 

might be identified by a person familiar with the domain. 

Based on the general framework for diversity-aware planning, three domain-

independent planning algorithms have been implemented and are described and 

evaluated herein. DivFF is a diverse heuristic search planner for deterministic 

planning domains (i.e. domains for which the assumption is made that any action 

can only have one possible outcome). DivCBP is a diverse case-based planner, also 

for deterministic planning domains. DivNDP is a heuristic search planner for 

nondeterministic planning domains (i.e. domains the descriptions of which include 

actions with multiple possible outcomes).  

The experimental evaluation of the three algorithms is conducted on a 

computer game domain, chosen for its challenging characteristics, which include 

nondeterminism and dynamism. The generated courses of action are run in the 
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game in order to ascertain whether they affect the game environment in diverse 

ways. This constitutes the test of their genuine diversity, which cannot be evaluated 

accurately based solely on their low-level structure. 

  It is shown that all proposed planning systems successfully generate sets of 

diverse solutions using varied criteria for assessing solution dissimilarity. 

Qualitatively-diverse solution sets are demonstrated to constantly produce more 

diverse effects in the game environment than quantitatively-diverse solution sets. 

A comparison between the two planning systems for deterministic domains, 

DivCBP and DivFF, reveals the former to be more successful at consistently 

generating diverse sets of solutions. The reasons for this are investigated, thus 

contributing to the literature of comparative studies of first-principles and case-

based planning approaches.  

Finally, an application of diversity in planning is showcased: simulating 

personality-trait variation in computer game characters. Sets of diverse solutions to 

both deterministic and nondeterministic planning problems are shown to 

successfully create diverse character behavior in the evaluation environment. 
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1  Introduction 

Pervasive science fiction, futurology, and the computer science research 

community have taught us to expect our world to be permeated by an emerging 

artificially intelligent population, which, according to our own (diverse) 

dispositions, needs, and fears, we may envision pragmatically as aids to a 

comfortable and enjoyable life or dramatically as artificial friends, spouses, perhaps 

formidable foes. We are watching this fauna come to artificial life in a surreal, 

disconnected manner, its limbs and minds developed slowly in separate labs, an eye 

here, an arm there, somewhere else the ability to distinguish overlapping voices. 

Sprites residing in online environments already spend their time reading our minds, 

and nudging us towards this or that product on e-commerce websites. They have 

relatives who learn, discern, compare, grade homework, translate written and 

spoken text (even providing the right speech inflections), drive vehicles (on roads, 

in races and war zones, and on extraterrestrial ground), and piece together 

narratives. Unsurprisingly, they also plan. 

  It is inevitable that the Artificial Intelligence species must and will be diverse 

in purpose, form, abilities, and behavior: our own diversity makes it so. When 

diversity characterizes a particular artificially intelligent agent, it can contribute to 

its behaving intelligently (by making use of diverse problem-solving capabilities), 

appearing intelligent (by pursuing varied goals in varied ways), and, if not 
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necessarily appearing human, at least appealing to humans (by surprising, 

intriguing, enchanting).  

  Planning, i.e. putting together courses of actions for reaching given goals, is an 

essential human cognitive activity, to which we resort whenever faced with a task 

of at least moderate complexity, requiring, and allowing time for coming up with, 

more than a basic reflex response.  

  But why do we require synthetic entities to plan as well? 

  Some artificial agents have been endowed with planning abilities in order to 

increase their autonomy, so that they can make themselves more useful (e.g. rescue 

robots) or more interesting and compelling to interact with (e.g. computer game 

characters).  

  Other automated planners (such as travel planners) create plans which they do 

not act out themselves, but present to human users, thus assisting these users in 

navigating large (and, possibly, unfamiliar) solution spaces.  

  Sometimes, synthetic planners plan collaboratively with human experts (in 

“mixed-initiative”), thus relieving the human experts of some of the cognitive load 

(Myers et al., 2002). 

There are numerous approaches to Artificial Intelligence planning, and there 

are various ways in which to define a planning problem that is to be solved by an 

artificially intelligent system, based on what information characterizing a real 

world (or game world) issue in need of attention is encoded into the problem 
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description. Herein, two types of planning techniques are used to address two 

categories of planning problems. 

In its simplest form, a planning problem specification consists of an initial state 

reflecting a problem situation (e.g. our friend is unhappy) and a goal state in which 

issues have been fixed or objectives have been reached (e.g. our friend is very 

happy). Domain description information (such as the available actions that can be 

used as the building blocks of solution plans) is provided separately, in ways 

specific to each planning technique.  

The two categories of planning problems addressed herein are deterministic 

and nondeterministic planning problems. 

  In deterministic planning problems, it is assumed that any action will, with 

absolute certainty, have a specific set of outcomes (e.g. offering flowers is assumed 

to always result in both the recipient’s joy and the jealousy of the recipient’s 

significant other).  

  Unrealistic though this assumption may sound, it is not to be immediately 

dismissed: it was instrumental in developing solid domain-independent planning 

techniques, and solutions constructed under these assumptions will often work 

reasonably well (Orkin, 2003).  

  The solution of a deterministic planning problem is a plan: a sequence of 

actions which, through their predetermined outcomes, are expected to gradually 

change the state of the world from the initial state to a goal state.  
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  A plan for cheering up a sad friend might consist of the sequence of actions: 

call friend (action 1), visit friend (action 2), offer flowers to friend (action 3). The 

intermediary states assumed to be brought about by actions 1 and 2 are (friend less 

sad) and (friend happy), respectively; while action 3 achieves the goal of the friend 

being very happy.  

  Nondeterministic planning problems may assign multiple possible outcomes to 

any action, thus more accurately reflecting real-world problem situations (e.g. 

offering flowers might result in either (1) joy or (2) an allergic sneeze and greater 

misery, or (3) it might be prevented altogether by unplanned-for external events).  

  Solutions can no longer be sequences of actions, as particular intermediary 

states are not guaranteed to hold. Hence, the solutions to nondeterministic planning 

problems are policies: sets of state-action pairs indicating what action should be 

executed in each state assumed possible.  

  A prudent human planner might approach things similarly by following the 

policy of reacting to the flower recipient’s joy (state 1) with an invitation to dinner 

(action 1), and to an allergic reaction to the flowers (state 2) by offering an apology 

and an antihistamine (action 2). 

The planning techniques used herein are first-principles heuristic search 

planning and case-based planning.  

Heuristic search planners approach planning as a search, in the set of possible 

states of the world or in the set of possible partial plans, of a path from an initial 
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state/empty plan to a state in which the goal has been fulfilled/a complete plan 

which achieves the goals. Of course, such a search can be strenuous and inefficient 

if conducted blindly, so it is guided through informed guesses and clever filters: 

heuristics.  

First-principles, or generative, planning generates each new solution from 

scratch, without relying on information gathered in any previous planning sessions. 

This, of course, is not how humans tend to plan: we often partially reuse solutions 

put together in previous problem-solving processes, conducted by ourselves or by 

others, when solving new problems (e.g. in the absence of the peonies she usually 

uses for a centerpiece, a florist might use chrysanthemums instead, while keeping 

the rest of her signature flower arrangement unchanged).  

Case-based planning emulates this problem-solving approach based on 

analogy: solutions to new problems are created by adapting solutions to similar, 

previously-solved problems.  

  Herein, diverse planning abilities are integrated into systems conducting 

heuristic search planning for deterministic and nondeterministic planning problems 

as well as case-based planning for deterministic planning problems: hence, three 

diverse planning systems are proposed, differing in terms of underlying planning 

techniques and basic information required for planning, but subsumed by the same 

general diverse planning framework. The next subchapters explain what exactly is 
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meant herein by diverse planning, and briefly introduce this general diverse 

planning framework. 

 

1.1 Defining Diversity 

Diversity, variety, diversification and other related notions come up often in 

Artificial Intelligence literature, in reference to objectives and techniques within 

various degrees of similarity to the ones pursued herein.  

Sometimes diversification means navigating the search space in a manner 

giving preference to diverse candidate solutions, so as to increase the chances of 

finding the optimal solution (Shell, Hernandez Rubio, and Quiroga Barro, 1994). In 

certain cases, the pursuit of diversity is restricted to a specific problem-solving 

domain, e.g. generating diverse intrusion-detection plans (Boddy et al., 2005). 

Another possibility is for agents to be given the freedom and means to vary the 

goals they are seeking to achieve (Molineaux, Klenk, and Aha, 2010). Sometimes 

diversity is in itself the objective and specifically pursued, at other times it is 

merely a means to another end (e.g. efficiency, optimality, or security) and/or 

achieved as a side-effect of other considerations. 

  Herein, the specific objective is to develop domain-independent techniques for 

generating sets of diverse solutions to planning problems. Domain independence 

means that the algorithms will, when provided with an appropriate domain 

description, be able to generate solutions for problems in any application domain 
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(e.g. games, travel, cooking, etc.), that is, the algorithms are not tailored 

specifically to the characteristics of any particular domain. As the proposed 

techniques encompass both deterministic and nondeterministic planning, the 

diverse solutions can be either diverse plans or diverse policies.  

  Two different plans in the cheering-up domain might be a) call friend, visit 

friend, offer bouquet of chrysanthemums to friend, and b) call friend, visit friend, 

offer bouquet of peonies to friend.  

  Two different policies could contain the following state-action subsets, 

reflecting different personality traits and attitudes to friends: a) state flowers wilted: 

action replace flowers, (b) state flowers wilted: action offer flowers. 

Why are diverse sets of solutions to planning problems useful and necessary? 

Diverse plans/policies can embody varied strategies and approaches to solving a 

problem, reflecting different priorities (such as caution versus willingness to 

explore in an adversarial game setting), thus catering to variation in circumstances, 

preferences and needs. This is particularly useful in the many situations in which it 

is prohibitively costly or unfeasible to specify all these preferences, circumstances, 

and needs as part of the problem description (in fact, they may not even be fully 

known at planning time).  

Diverse solutions generated for human use can provide their users with 

alternatives sampling a larger area of the solution space (which, given the vast 
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search spaces often associating with planning, it is not feasible to browse 

exhaustively).  

In mixed-initiative planning situations, by proposing a set of diverse partial 

plans satisfying a subgoal specified by the human planner, the artificially intelligent 

planner can make its human collaborator aware of possibilities that s/he may have 

failed to take into account (a likely scenario, given the immense cognitive load and 

psychological pressure burdening human planners working in information-heavy 

and high-risk domains, such as the Mars exploration projects, Bresina et al., 2005).  

When the diverse solutions are enacted by an artificial autonomous agent, they 

can make that agent not only better equipped to handle varied situations, but also 

more engaging to interact with: in computer game environments, diverse plans and 

policies can be used to model non-player characters exhibiting varied behavior, 

adding to the realistic atmosphere and enjoyment factor of the gaming experience.  

 

1.2 Alternative Approaches to Creating Diversity 

I briefly sketch several alternative approaches to generating diverse sets of 

solutions (in Planning and other branches of Artificial Intelligence), with which the 

one used herein will be contrasted (this list is not exhaustive: a more extensive 

overview of related work is provided in Chapter 9).  

Diversity by Randomization is an accessible, knowledge-light approach to 

generating diverse solutions. It consists of randomizing certain decisions made 
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during the solution generation process. This means that no measure of diversity is 

used at solution generation time and, furthermore, it is not necessary to define 

comparison metrics (which measure how dissimilar solutions are to one another). 

While random diversity may be relatively easy to achieve (assuming random 

planning choices do not prevent a solution from being found), the value of this 

approach is diminished by the fact that one is generally looking not for just any set 

of different solutions, but for solutions which differ in a specified way.   

  Random diversity is often used as baseline against more targeted approaches 

(Smyth and McClave, 2001; Coman and Muñoz-Avila, 2011a). 

Diversity by Elimination. Another approach to diversity is first generating a set of 

solutions, then eliminating a subset of them which are assessed as being too similar 

to others in the generated set (as described by Srivastava et al., 2007, as “a naïve 

approach”): this time, a measure of similarity/dissimilarity, however basic, needs to 

be defined. Still, diversity is not enforced while generating the set of solutions, but 

afterwards. 

Indirect Diversity. Often, diversity comes about as a side-effect of techniques used 

for other purposes. In planning for computer games, diverse character behavior has 

been created (even serendipitously!) by endowing characters with goals or needs 

and with the ability to pursue their fulfillment (Orkin, 2003; Paul et al, 2010). 
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1.3 The Thesis: Iterative Diverse Solution Generation Based on 

Distance Metrics  

My thesis is that sets of diverse solutions to planning problems can be generated, in 

a way that enables meaningful diversity, through an iterative approach which 

enforces diversity considerations specifically at solution generation time, and is 

based on solution distance metrics: measures of the dissimilarity between two 

solutions.  

In order to generate solutions which, in addition to solving the problem, add to 

the diversity of the final solution set, candidate solutions are evaluated using a 

composite criterion (Equation 1) which balances estimated solution-set diversity 

with the estimated adequacy of the candidate solution. Equation 1 will be explained 

in more detail after introducing necessary preliminaries. 

 

                                                      (1) 

 

The general framework for this approach to generating diverse solutions 

specifies how to modify a regular non-diverse planner (be it heuristic-search-based 

or case-based) so as to obtain a diversity-aware planner.  

Let us call the non-diverse planner PL. PL uses a criterion or set of criteria to 

evaluate and select candidate solutions during the planning process. The evaluation 

criteria vary from planning technique to planning technique, and even from planner 



www.manaraa.com

14 
 
 

 

to planner (as will later be explained, estimated goal distance is a typical evaluation 

criterion in heuristic search planning, while similarity between the case problem 

and the new problem is typically used in case-based planning), and will hereinafter 

be referred to as the solution adequacy criterion.   

  Diverse solution generation is conducted in the following manner. First, a 

solution is generated using PL. Then, additional solutions are generated using a 

modified version of PL which assesses candidate solutions based on the composite 

evaluation criterion (Equation 1).  

  In Equation 1, π is a candidate partial solution to a planning problem, П is a set 

of previously-generated solutions to the same problem, SolAdequacy is the solution 

adequacy of π, as computed by PL, RelDiv(π, П) is a measure of the relative 

diversity between π  and П, i.e. an estimate of the diversity of the set of solutions 

that would be obtained by completing the current candidate solution and adding it 

to the set (Equation 3), while α is a parameter allowing the adjustment of the 

complementary weights assigned to solution adequacy and diversity (lowering α 

may make it difficult to find solutions; increasing α may decrease the diversity of 

the generated plan set). 

In order for artificial planners to be able to assess whether a set of solutions is 

diverse, so that they can give preference to candidate solutions which appear to 

increase this diversity, they must be made able to achieve something human 

planners do naturally, though subjectively and with varying degrees of success: 
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assess just how different two solutions are from one another. Two solutions may be 

distinct, but are they truly meaningfully different, where what is meaningful may 

differ not only from domain to domain, but also from task to task? This comparison 

is achieved through solution distance metrics, which are of multiple types.  

Quantitative solution distance metrics are defined in ways that are not 

specific to a particular application domain. One might, for example, count the 

actions which appear in either of two compared solution plans, but not the other 

one (Srivastava et al., 2007; Nguyen et al., 2012; Eiter et al., 2011; Coman and 

Muñoz-Avila, 2011a).  

Qualitative solution distance metrics are defined based on information 

specific to the domain of a particular planning problem (such as knowledge of the 

symbolism of different types of flowers in a florist domain).  

Each category has its own strengths and weaknesses: quantitative distance 

metrics require reduced knowledge engineering, but do not guarantee meaningful 

diversity; qualitative distance metrics are more knowledge-intensive, but guarantee 

meaningful results, as long as they are appropriately defined with regard to the 

domain they refer to. While the general algorithms described herein are, 

themselves, domain-independent, the comparison metrics they base solution 

differentiation on can be either quantitative or qualitative. 
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1.4 Contributions 

I now describe the contributions that this work makes to AI planning and diversity-

aware problem-solving. 

1) A generalized framework (described briefly above and in detail in Chapter 

3.1) for iterative diverse solution generation based on distance metrics is 

presented. This framework separates the solution generation algorithm from 

the measures used for solution comparison (distance metrics), hence it is 

flexible with regard to these measures. It uses a composite candidate 

solution evaluation criterion (Equation 1) balancing estimated solution-set 

diversity with solution adequacy. Implementations of the general 

framework can use a variety of planning techniques to solve various 

categories of planning problems.  

2) Quantitative and qualitative distance metrics are defined (Chapter 3.2) and 

an experimental comparative evaluation of them is conducted. In addition, 

two subtypes of qualitative distance metrics, goal-achievement and 

inflation-based distance (Chapter 3.4) are defined and illustrated in an 

experimental environment. 

3) This work contributes to the body of literature comparing first-principles 

and adaptation-based approaches to planning by presenting the first 

comparison between a first-principles planner and a case-based planner 
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from the point of view of the diversity of the generated solutions (Chapter 

5). Previous studies have compared such systems in terms of planning 

efficiency and other considerations (Veloso, 1994; Gerevini and Serina, 

2000; 2010; Fox et al., 2006; Au, Muñoz-Avila, and Nau, 2002; van der 

Krogt and de Weerdt, 2005; Kuchibatla and Muñoz-Avila, 2006).  

4) All diverse-solution-generation algorithms described herein are tested on a 

non-synthetic planning domain based a computer game. This evaluation is 

conducted by running the generated plans and policies in the game 

environment, observing the effects they have on the environment, and 

quantifying and analyzing the diversity of these effects. This is a significant 

contribution: in previous work, the diversity of generated plans was only 

assessed by analyzing the sets of plans themselves. 

   

  Based on the general diverse planning framework, a set of domain-independent 

diverse planning algorithms have been developed. These algorithms address 

deterministic and nondeterministic planning, and all of them are flexible with 

regard to the solution comparison metrics they use.  

  DivFF (Chapter 4.1) is a diverse heuristic search planner for solving 

deterministic planning problems. DivCBP (Chapter 4.2) is a diverse case-based 

planner, also for deterministic planning problems. DivNDP (Chapter 6) is a 

heuristic search planner for solving nondeterministic planning problems. DivCBP 



www.manaraa.com

18 
 
 

 

is the first system for diverse case-based planning, while DivNDP is the first 

system for diverse non-probabilistic nondeterministic planning. 

  A possible application for solution diversity is proposed and explored: 

simulating personality-trait variation in non-player characters in computer games 

and other virtual environments (Chapter 7). In fact, all diverse planning techniques 

presented herein are demonstrated and tested in a computer game environment. The 

relationship between Artificial Intelligence and computer games is an immediately 

obvious and mutually beneficial one. Clever artificial agents make engaging non-

player characters to populate virtual worlds with (Orkin, 2003) and, in return, game 

domains provide Artificial Intelligence researchers with testbeds (Ontañón et al., 

2010) sharing many challenging characteristics (such as nondeterminism and 

dynamism) with other domains of practical interest, for which they can act as risk-

free simulation environments.   

 

1. 5 Outline 

The remainder of this dissertation is organized as follows. Chapter 2 introduces 

relevant background on deterministic and nondeterministic planning domains, first-

principles heuristic search planning for deterministic and nondeterministic planning 

domains, and the case-based approach to planning. Definitions necessary for 

understanding the upcoming material are provided. Inspiration from and 
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connections with human approaches to planning and general problem-solving, as 

studied by Cognitive Science, are also addressed.   

 Chapter 3 introduces and motivates the Solution Diversity problem, as 

addressed herein, in more detail. It also presents the general framework for diverse 

planning which subsumes all diverse planning systems proposed in this work. The 

various categories of distance metrics (quantitative and qualitative, goal-

achievement and inflation-based) are described, and a planning domain based on 

the computer game Wargus, which will be used extensively in the experimental 

evaluation, is introduced. 

 Chapter 4 is dedicated to diversity in planning for deterministic domains. First, 

it describes a general framework for diverse planning based on diverse heuristic 

search, and introduces DivFF, an implementation of it. Then, it addresses diversity 

in case-based planning: it begins with a differentiation between state diversity and 

plan diversity, necessary due to the approach to diversity previously taken in case-

based reasoning; then, it presents a general algorithm for diverse case-based 

planning. 

Chapter 5 provides a comparative study of DivFF and DivCBP, primarily from 

the point of view of the diversity of their generated solutions.  

Chapter 6 describes DivNDP, an algorithm for generating diverse policies for 

nondeterministic planning problems. 
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In Chapter 7, computer-game-character diversity is showcased as an 

application of plan and policy diversity. 

Chapter 8 is dedicated to the experimental evaluation of all the proposed 

diverse planning systems.  

An overview of related work is presented in Chapter 9. It includes diversity in 

subfields of AI other than planning, other approaches to comparing solutions and 

generating diverse solutions, and other approaches to modeling computer game 

characters and ensuring their diverse behavior.  

Chapter 10 is dedicated to the conclusion and ideas for possible future work 

extending various research directions explored herein. 
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2  Background 

Planning is a branch of Artificial Intelligence concerned with generating courses of 

action for reaching given goals, maximizing utility functions, and performing given 

set of tasks. 

  Typically (though not exclusively), a planning problem is described in terms of 

an initial state (or set of states) and a goal state (or set of states). Its solution is a 

plan (sequence of actions) or a policy (set of state-action pairs) which, when 

executed, gradually transforms the initial state(s) into a goal state. 

  Deterministic planning (which generates plans) is based on the assumption 

that each action that may be part of a plan has a predefined outcome, assumed to 

occur with absolute certainty every time the action is executed.  

  Nondeterministic planning (which produces policies) allows for planning 

domain descriptions in which actions have multiple possible outcomes.  

  Planning has been conducted using a wide variety of problem-solving 

techniques and modeling frameworks, including: search algorithms with or without 

heuristic guidance, constraint-satisfaction and propositional satisfiability 

techniques, Markov decision processes, and model-checking techniques (Ghallab, 

Nau, and Traverso, 2004). Knowledge-engineering requirements range from 

relatively low (e.g. basic specifications of available actions, with preconditions and 

effects) to high, as in the case of Hierarchical Task Network planning, which, based 
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on an extensive description of how tasks are solved in a particular application 

domain, conducts an iterative deconstruction of high-level tasks to lower level 

ones, until a plan consisting of elementary actions has been produced. 

  Domain-independent planning systems are able to generate plans for any 

domain, as long as they are provided with an appropriate domain description.  

  Domain-dependent planning systems are tailored to the characteristics of 

particular application domains (e.g. cooking) and may take advantage of 

characteristics of the domain to increase the effectiveness and efficiency of 

planning. 

 In the next subchapters, I describe deterministic and nondeterministic planning 

domains and problems as well as two planning techniques: heuristic-search 

planning and case-based planning. I also introduce the heuristic-search planner 

FastFoward (FF) and the NDP algorithm for nondeterministic planning, which will 

later be modified so as to be able to produce diverse sets of solutions.  

 

2.1 Deterministic Planning 

Classical planning (Ghallab, Nau, and Traverso, 2004) is a planning paradigm 

based on assumptions which, by abstracting away problematic characteristics of 

realistic domains, have helped develop efficient domain-independent planning 

techniques, perhaps at the expense of immediate applicability to real-world 
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problems (although solutions developed under these assumptions will sometimes 

work reasonable well even when run in the environments in which the assumptions 

do not hold).  

Perhaps the most notable simplification at the basis of classical planning is that 

of determinism: the assumption that any action has one predefined outcome 

assumed to occur with absolute certainty, hence: executing action a in state s will 

always result in a given state s’. 

 The additional assumptions of classical planning include the following: 

- fully-observable environment: complete information about the state of the 

environment is always available; 

- static environment: the state of the environment can only be changed by the 

agent’s actions, i.e. there are no external events that can influence the 

current state; 

- implicit time: there is no notion of action duration, transitions from one 

state to another are assumed to be instantaneous; 

- finite set of states: the environment may only ever be in one of a finite set of 

states; 

- offline planning: no planning or replanning needs to be conducted during 

plan execution, meaning that environment conditions are expected to be as 

assumed at planning time, and goals are expected not to change. 
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A classical planner receives as input a problem description consisting of an 

initial state and a goal state, and a planning domain description (a state-transition 

system). Its output is as solution plan that solves the input problem by transforming 

its initial state into the goal state. 

Definition 1. A deterministic planning domain Dom is a triple Dom = (S, A, γ), 

where S is a finite set of states, A is a finite set of actions, and  γ : S × A → 2
S
 is the 

state-transition function, which describes the environment in which it is assumed 

that the plan will be executed. This environment can be in various states, and it can 

be influenced through actions. Actions cause the environment to change its current 

state to another state. If γ(s, a) is not empty, then action a can be applied while the 

environment is in state s, causing the current state to change from s to γ(s, a).  

In practice, the description of a planning domain (to be used by a heuristic 

search planner such as FastForward, by Hoffmann and Nebel, 2001, which will be 

described in detail later on), typically consists of the following elements: a set of 

objects (which have specified types) assumed to exist in the world, a set of first-

order literals with formal parameters of specified types (these formal parameters 

can be instantiated with available objects of the proper type), used to represent facts 

that may hold in the domain world, such as relationships between objects; and a set 

of operators with preconditions and effects. 

Definition 2. A state is a set of facts represented as first-order literals (this is the 

classical state representation in the state classification of Ghallab, Nau, and 
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Traverso, 2004). For example, (isSad(friend), have(freesias)) 

might be the description of a possible state of the world in which our friend is sad 

and we are in the possession of a bouquet of freesias. 

Definition 3. An operator is a generalized representation of an action in a planning 

domain. It specifies a set of formal parameters, a set of preconditions, and a set of 

effects defined in terms of these formal parameters.  

Definition 4. An action is an instantiation of an operator o, obtained by 

instantiating the formal parameters of o with actual objects from the domain 

description. For example, the action has(friend, freesias) could be an 

instantiation of the operator has(Person, Thing). 

Definition 5. A precondition of operator o is a fact that needs to hold in state s 

(i.e., a literal that needs to be contained in the set of literals describing s) in order 

for an action a instantiating operator o to be applicable in state s. The preconditions 

of action a are instantiations of the preconditions of operator o. For example, if 

have(Thing) is a precondition of the operator give(Thing, Person), then 

have(freesias) is a precondition of the action give(freesias, 

friend). 

Definition 6. An effect of operator o specifies a way in which the current state will 

be modified when an action a, which is an instantiation of o, is executed. Effects 

are of two types: add effects (facts which are added to the description of state s in 
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order to obtain state γ(s, a)), and delete effects (facts which are removed from the 

description of state s in order to obtain the description of state γ(s, a)). The effects 

of action a are instantiations of the effects of operator o. For example 

has(Person, Thing) could be an add effect of the action give(Thing, 

Person). A delete effect of the same action might be not have(Thing). 

Definition 7. An action a is applicable in state s if the preconditions of a hold in s: 

formally, if γ(s, a) is nonempty. ADom(s) is the set of all actions applicable in s in 

the domain Dom. If a   ADom(s), then executing a in s results in the state γ(s, a).  

Definition 8. A deterministic planning problem is a triple P = (Dom, s0, g), 

where Dom is a deterministic planning domain, s0 ϵ S is an initial state, and g a set 

of facts making up the goal. 

  The solution of a deterministic planning problem is a plan.  

Definition 9. A plan π is a sequence of actions (a1,...,an), which, through their add 

and delete effects, repeatedly change the state of the environment, taking it from an 

initial state s0, through a series of states (s1,…,sn-1), to a final state sn. In order for π 

to be a valid plan for the planning domain Dom and the planning problem P, the 

preconditions (as defined in the description of Dom) of action a0 must hold in the 

initial state of P, and the preconditions of each action ai must hold in the state γ(si-2, 

ai-1). A valid plan π is a solution for planning problem P if, after executing the 
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sequence of actions π consists of, the final state of the environment contains all 

facts that make up g, the goal of P. 

Types of planning which eliminate the classical planning assumptions include 

nondeterministic planning (which eliminates the determinism and, sometimes, the 

fully-observable-environment assumptions), conformant planning (which does not 

require states to be observable), temporal planning (which eliminates the implicit 

time assumption), partially-observable planning (which does not require the current 

state of the environment to be fully known), and online planning/replanning (which 

consist of adjusting plans during execution, in response to unexpected environment 

conditions and/or changing goals). An upcoming subchapter will be dedicated to 

nondeterministic planning techniques. 

 

2.2 Heuristic-Search Planning 

Heuristic search planners approach planning problems as search problems. They 

conduct planning iteratively, at each step generating and evaluating a set of partial 

candidate solutions, out of which one candidate is chosen for further refinement, 

until a valid solution has been constructed (or a failure signal has been triggered). 

Heuristic functions are used to evaluate and select candidate partial solutions.  

  Heuristics provide educated (but certainly not infallible) guesses as to the value 

of a candidate solution, typically in the form of an estimate of the effort required to 

turn the candidate solution in question into a complete, valid solution to the 
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planning problem. The lower the estimated effort, the more promising the candidate 

solution. Heuristic evaluations are often conducted based on a solution of a relaxed 

problem (a simplified version of the planning problem), assumed to provide a good 

enough approximation of a solution of the actual problem. 

  State-space search heuristic planners (such as the one used later on in this 

work) conduct search in a subset of the space of possible states of the world.1 At 

each stage of the search, a number of candidate states are evaluated using a 

heuristic function. After the most promising candidate s is chosen, states in the 

neighborhood of s are identified and become the new candidate states. What the 

initial value of s is, and which states are in the neighborhood of s depends on 

whether a forward-search or a backward-search planner is used. In state-space 

planning, a typical evaluation heuristic is goal distance: an estimate of the length 

of the plan from the candidate state to a state satisfying the goal. 

  Forward-search planners start search from the initial state of the problem, and 

look for a state containing all facts specified in the goal description. They identify 

states in the neighborhood of s by applying to s the effects of actions applicable in 

s.  

                                                             
 

 

1 They can be contrasted with plan-space heuristic search planners, which search in the space of 
possible partial plans. 
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  Backward-search planners begin searching from a state consisting of all the 

facts in the goal description. The neighborhood of the current state s consists of the 

set of states S’, such that, for each state s’ϵ S’, γ(s’, a) = s.  

  In the context of forward-search state-space heuristic planning, the term 

candidate solution plan will be used to refer to a plan consisting of the sequence 

of actions (a1,…,ai, ac), where the current state s = si, and γ(si, ac) = sc, where  sc is 

a candidate state in the neighborhood of s. In other words, a candidate solution plan 

is a plan leading from the initial state of the problem to one of the current candidate 

states. It is not to be confused with candidate solution plans in plan-space search 

planning, the components (and their ordering) of which are subject to modification 

as long as a commitment is not absolutely necessary. In state-space search, the first 

segment of a candidate solution plan (i.e. the sequence of all actions but the final 

one) has already been established as being part of the final solution plan, and the 

final action is the only one still subject to selection.  

  The term candidate solution is preferred herein to candidate state, as it allows 

one to refer more generally to similar constructs in various types of heuristic search 

planning as well as case-based planning. 

  Some heuristic-search-based planners are also first-principles (or generative) 

planners, i.e. they produce new solutions from scratch. An example of such a 

planner is FastForward (Hoffmann and Nebel, 2001), which will be described in 

more detail later on.  
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Algorithm 1: General Framework for Heuristic Search Planning 

Input: PL - a heuristic search planner which uses the heuristic function hPL to 

evaluate candidate solutions, and P - the planning problem.  

Output: a solution plan π. 

getCandidates(P, π) returns the set of candidate partial solutions to problem P in 

the neighborhood of partial solution π.  

selectCandidate(C, hPL) returns the candidate partial solution in C that is ranked 

highest based on the heuristic hPL. 

GeneratePlan(PL, P) 

1. π  empty-plan/seed plan 

2. Repeat 

3.    C  getCandidates(P, π) 

4.    π  selectCandidate(C, hPL) 

5. Until π is a solution for P 

6. Return π 

 

  The abstracted pseudocode above (Algorithm 1) provides a generalized sketch 

of how heuristic search planning (be it state-space or plan-space, forward or 

backward) works. 
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2.2.1 The FF Heuristic Search Planning System 

FastForward (or FF, Hoffmann and Nebel, 2001) is a first-principles, heuristic, 

forward-search, state-space planner which uses a goal-distance planning heuristic 

function for candidate-solution evaluation.  

  The heuristic value of a candidate state is the length of the solution plan of a 

relaxation of the planning problem, with the candidate state as initial state. The 

relaxed problem is obtained by ignoring all delete effects of the actions in the 

planning domain. The solution plan to the relaxed problem is generated using the 

Graphplan planner (Blum and Furst, 1997), which conducts planning by building a 

structure called planning graph, from which it then extracts a solution plan.  

  The primary search type used by FF, Enforced Hill-Climbing (EHC), searches 

the state space in the following way: starting from the initial state, for each selected 

current state s, it conducts a breadth-first search, in the set of states that are 

reachable2 from s, for the first state that is better evaluated than s (based on the 

heuristic described above) or fulfills the goal of the planning problem. Note that not 

all candidate states3 will be evaluated, as search stops as soon as a state with a good 

                                                             
 

 

2 Note that this search is not restricted to states in the immediate vicinity of s (states which can be 
obtained by applying only one action), but can be extended to states obtainable by applying 

multiple actions.  

3 Unlike in the more limited definition for general state-space search planning, candidate states are 
now all states which are reachable from s, by any number of steps. 
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enough evaluation is found. If there are no more candidate states to explore and the 

goal has not been reached, EHC is considered to have failed. 

  EHC also conducts preliminary action pruning using a filter called Helpful 

Actions. This filter makes use of information extracted from the Graphplan 

planning graph to eliminate from consideration applicable actions which look less 

promising. However, as this evaluation is not infallible, useful actions can be 

filtered out, leading to the goal being unreachable.  

  While efficient, EHC is not complete: it is not guaranteed that, if a solution 

exists, EHC will find it. When it fails to produce a solution, FF switches to a 

complete variant of Best-First Search (BFS), with no action pruning.  

  Note that while, with BFS, heuristics are still used to guide the search, in the 

hope of increasing efficiency, the entire search space will be explored if necessary. 

Hence, if a solution to the problem exists, it will, in theory, be found (in practice, 

prohibitive memory and time requirements may prevent this from being achieved 

within reasonable cost limits). The ability to fall back on BFS whenever EHC fails 

makes the FF planner complete. 

 

2.3 Case-based Planning 

Case-based planning (Spalazzi, 2001; Cox, Muñoz-Avila, and Bergmann, 2005) is 

a subbranch of case-based reasoning (Aamodt and Plaza, 1994), a 

“psychologically-plausible” problem-solving paradigm modeled on an approach to 
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fulfilling tasks employed routinely by humans: using memory and analogy-based 

reasoning to create solutions to new problems by making use of information from 

previous problem-solving sessions (Hammond, 1990; Keane, 1996; Spalazzi, 

2001).  

While first-principles planning systems put together solutions to a new 

problem from scratch, case-based planning systems identify previously-solved 

problems similar to the current one, then make use of stored information from these 

previous planning processes to produce solutions to the new problem.  

Case-based planners are either transformational-analogy planners (as is the 

one used herein) or derivational-analogy planners.  

Briefly, transformational-analogy planners modify solutions to previously-

solved problems to obtain solutions for the new problem, whereas derivational-

analogy planners attempt to re-conduct, in the context of the new problem, a 

planning process previously used for other problem-solving tasks. The information 

that needs to be stored for future use and adapted to the new context is, in the first 

case, the solution itself, and, in the second case, a description of the planning 

process that has produced the solution. 

 While, in theory, the case-based planning approach could be used to solve both 

deterministic and nondeterministic planning problems, work conducted so far has 

focused on deterministic planning. 
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 Case-based planning systems plan using case bases containing information 

collected during previous problem-solving processes. The input these planning 

systems require is a new problem (“new” as opposed to the already-solved “old” 

problems in case-base cases). 

Definition 10. A case base is a set of cases containing information from previous 

planning processes. A case consists of a previously-solved planning problem and 

information regarding the solution of the problem: the actual solution plan for 

transformational-analogy systems, and a derivational trace summarizing a previous 

planning process for derivational-analogy systems. 

Definition 11. A case-based planning problem is typically a triple P = (CB, s0, g), 

where CB is a case base, s0 ϵ S is an initial state, and g a set of facts making up the 

goal. It may contain additional information, such as the reasons for the failure of 

previous planning attempts. 

The case-based planning cycle (Spalazzi, 2001), based on the case-based 

reasoning problem-solving cycle, as described by Aamodt and Plaza (1994) 

generally consists of the following steps (although specific approaches taken by 

individual case-based planners vary greatly, and may include modifications of the 

cycle): 

- retrieval from the case base of one or more appropriate solution cases 

(chosen based on criteria such as similarity metrics assessing the relevance 

of stored cases to the current problem); 
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- adaptation (reuse): adapting the retrieved case(s) as necessary, in order to 

create a valid solution for the new problem (adaptation can be achieved in a 

number of ways, including by domain-dependent or domain-independent 

heuristics, constraint satisfaction, merging multiple retrieved cases, and 

utilizing first-principles planning systems); 

- revision of the generated plans, in case of planning or plan-execution 

failure; 

- retaining the newly-generated plans in the case base, for use in future 

planning processes.  

Case-based planners can be combined with heuristic search planners, which can 

be used in various stages of the case-based planning cycle. 

I now describe the retrieval and adaptation stages, which are the most relevant 

to the work presented herein, in more detail. 

Retrieval of a case or set of cases from the case base is conducted based on a 

retrieval criterion which, most commonly, is a measure of the similarity between 

the case problem and the new problem. A typical approach is to the rank cases 

based on the retrieval criterion, and then return the top k cases.  

For example, in the florist domain, the similarity criterion might be the type of 

the event at which a flower arrangement is meant to be displayed. If the new 

problem requires a bouquet for a wedding, we might select k = 3 cases the 
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problems of which required flower arrangements for 1) a wedding, 2) a wedding 

anniversary, 3) an engagement party.  

Criteria other than similarity can and have been used for retrieval: an example 

of such an approach is adaptation-guided retrieval (Smyth and Keane, 1998), which 

chooses cases based on an assessment of how easy it would be adapt their solutions 

to the requirements of the new problem. 

Retrieval criteria vary in computational complexity, based, among others, on 

the complexity of the problem representation. A two-step retrieval method (Forbus, 

Gentner, and Law, 1995) may be used if the retrieval criterion is expensive to 

compute: in such cases, a more approachable criterion is used to filter out a subset 

of the cases; then, the expensive criterion is be applied only to the remaining cases, 

in order to select the final top k ones.  

While, traditionally, in general case-based reasoning, retrieval is conducted 

based on the problem-description component of the case, in certain problem-

solving domains, including diverse planning (as will be shown later on), it is 

necessary to take the solution into account at retrieval time as well. Two-stage 

retrieval might be a good approach to this issue, as applying retrieval criteria to 

solutions is likely to become computationally expensive in complex planning 

domains. 

 Adaptation, or reuse, can be achieved in various ways, as described by 

Spalazzi (2001) and Muñoz-Avila and Cox (2008). 
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Sometimes, no adaptation is conducted, and retrieved plans are returned as 

they are, to be used directly or adapted manually (because of the prohibitive 

difficulty of automated adaptation for particular tasks or users’ distrust of its 

capabilities). When used, adaptation techniques can be either domain-independent 

or domain-specific.  

Transformational analogy adapts a solution plan from a retrieved case through 

insertion, deletion, and/or modification of the plan’s components. In the florist 

domain, the action of adding daffodils to a bouquet might be replaced with that of 

adding yellow freesias if daffodils are not available, or are disliked by the client. 

Generative heuristic-search planning techniques can be used at this stage.  

In derivational analogy, adaptation consists of using a retrieved derivational 

trace to attempt to replicate previous planning processes in the context of a new 

problem (typically using a first-principles planning system to do so), to the extent 

that this possible (for example, certain planning decisions specified in the 

derivational trace may not be feasible in the current planning context because the 

required preconditions do not hold).  

 Outside case-based planning, the term plan adaptation can be seen as referring, 

more generally, to any planning approach which makes use of information from 

previous planning processes to create new plans, e.g. plan repair (Fox et al, 2006; 

van der Krogt and de Weerdt, 2005). 
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Finally, I will make a note of the fact that, while planning tasks are synthesis 

tasks, i.e. they consist of putting together a new solution (a plan), case-based 

reasoning is also extensively used to solve analysis tasks, which only require 

preexisting library entries to be selected, labeled, or classified. This distinction is a 

necessary prerequisite for understanding various discussions later on. 

   

2.4 Nondeterministic Planning 

Nondeterministic planning eliminates the classical planning assumption of 

determinism, allowing planning domains to include actions with multiple possible 

outcomes. There are two main types of nondeterministic planning: probabilistic 

and non-probabilistic (Ghallab, Nau, and Traverso, 2004).  

In probabilistic planning, it is assumed that the possible outcomes of an 

action have been assigned probability values indicating the likelihood of their 

occurrence. This allows goals to be encoded as objective functions and problems to 

be treated as optimization tasks.  

Non-probabilistic planning, which does not make these assumptions, more 

accurately reflects characteristics of the many domains in which it is unrealistic or 

impractical to assign probabilities to the outcomes of the actions, as pointed out by 

Ghallab, Nau and Traverso (2004). 

Hereinafter, the term nondeterministic planning will be used to refer to non-

probabilistic nondeterministic planning, unless otherwise noted. 
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The input of a nondeterministic planning system consists of a problem 

description (a set of initial states and a set of goal states) and a domain 

description (a state-transition function reflecting the fact that actions may have 

multiple possible outcomes). The output is solution policy. 

  Assume the following definitions (Kuter et al., 2008).  

Definition 12. A nondeterministic planning domain Dom is a triple Dom = (S, A, 

γ), where S is a finite set of states, A is a finite set of actions, and  γ : S × A → 2
S
 is 

the state-transition function. An action a is applicable in s if γ(s, a) is nonempty. 

ADom(s) is the set of all actions applicable in s in the domain Dom. If a   ADom(s), 

then executing a in s may result in any one of the states in γ(s, a).  

Definition 13. A nondeterministic planning problem is a triple P = (Dom, S0, G), 

where Dom = (S, A, γ) is a nondeterministic planning domain, A is a set of actions, 

S0  S is a set of initial states, and G  S is a set of goal states.  

Definition 14. A policy is a function π: Sπ  S → A, such that, for each s  Sπ, the 

action π(s) is applicable in s. Intuitively, a policy is a set of state-action pairs (si, ai), 

indicating that, when si is identified as the current state of the environment, action 

ai should be executed. 

Definition 15. The execution structure of a policy π, Σπ, is a directed graph 

representing all possible executions of π. Σπ = (Vπ, Eπ), where Vπ = Sπ          
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{γ(s, π(s))} and Eπ = {(s, s’) | s  Sπ, s’  γ(s, π(s))}. If there is a path in Σπ from s 

to s’, then s’ is a π -descendant of s. 

  Cimatti et al. (2003) define three types of solutions for nondeterministic 

planning problems: weak, strong, and strong cyclic.  

Definition 16. Strong cyclic solutions (the type of solutions generated herein) 

guarantee that any possible execution path will reach a goal in a finite number of 

steps, provided it exits any loop that it enters. Strong cyclic solutions are safer than 

weak solutions (which are only required to have one possible execution path which 

reaches a goal), and less restrictive than strong solutions (which must guarantee 

that a goal will be reached in a finite number of steps, hence not allowing loops), so 

that a problem which does not have strong solutions may have strong cyclic 

solutions.  

  Like Kuter et al. (2008) and Fu et al. (2011), this work addresses strong-cyclic 

planning for fully-observable nondeterministic (FOND) problems. FOND 

problems are defined under the assumption that the states are fully observable. 

Even under this assumption, the planning difficulty lies in the potential exponential 

growth of the search space in domains containing actions with numerous possible 

outcomes, all of which must be taken into account. 
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2.4.1 The NDP Nondeterministic Planning System 

NDP (Kuter et al., 2008) is an algorithm for solving nondeterministic planning 

problems by converting nondeterministic planning domains into deterministic ones, 

then repeatedly calling a deterministic heuristic planner, and step-wise putting 

together a policy from the plans it generates (Algorithm 2).  

  FOND domains are converted into deterministic ones by replacing each 

nondeterministic action a, where a has n possible outcomes, with n deterministic 

actions a1,..,an, where each ai corresponds to one outcome of the original action a.  

  Let PL be the heuristic planner called by NDP. On the first run, if successful, 

PL produces a complete plan p1 from an initial state to a goal state. During 

planning, each time a deterministic action ai originating from a nondeterministic 

action a is added to the partial plan, all states corresponding to effects of a other 

than the intended one, called failed effects (Fu et al., 2011), are added to a set of 

open nodes. At each subsequent stage, until no open nodes remain, an open node is 

chosen arbitrarily, and PL attempts to generate a plan pk from this open node to a 

goal state, again adding any new failed effects to the list of open nodes. After 

generating each of these plans pk, all state-action pairs (s, a), where a is the 

nondeterministic action corresponding to the deterministic action ai in pk, and s is a 

state in which ai is applied in pk, are added to the partial policy. The policy is 

complete when no open nodes remain. 
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Algorithm 2:  The NDP Algorithm for Solving FOND Planning Problems 

Input: Dom - a nondeterministic planning domain, S0 - the set of initial states of 

the nondeterministic planning problem, G - the set of goal states of the problem, 

and PL - the classical planner that NDP makes use of.  

Output: π, a solution policy for the planning problem (Dom, S0, G). 

NDP(Dom, S0, G, PL) 

1. Dom’ ← a classical relaxation of Dom 

2. π ←  

3. S0 ← S0\G 

4. If S0 =  

5.  Return π 

6. Loop 

7.    If s in S0 s.t. ADom’(s) =  

8.  Return FAILURE 

9.    S  ← {all non-goal leaf states in Σπ(S0)}  

10.   If S =  

11.        π ←  π \ {(s, a)  π |s is not a π-descendant of S0}  

12.        Return π 

13.   arbitrarily select a state s  S 

14.   call PL on the planning problem (Dom’, s, G) 

15.   If PL returns a solution plan p then 
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16.        π ←  π   {(s, a) | ai is an action in p, a is the non-deterministic action    

      corresponding to ai, and s is the state in which ai is applied in p}  

17.   Else //PL returns FAILURE 

18.         BACKTRACK4 

 

 

  Fu et al. (2011) implement a variant of NDP which uses FF (Hoffmann and 

Nebel, 2001) and is augmented with two extensions called state reuse and goal 

alternative. Their version is shown to be characterized by higher planning 

efficiency and smaller generated policies (seen as a sign of solution quality, as 

pointed out by Kuter et al., 2008) than previous strong-cyclic planners including 

MBP (Cimatti et al., 2003) and Gamer (Kissmann and Edelkamp, 2009).  

  State reuse is achieved by stopping an FF search as soon as any solved state (a 

state which already has an associated action in the partial policy) has been reached, 

instead of always continuing until a goal state has been reached.  

  Goal alternative consists of providing open nodes with alternative goals (the 

alternative goal of a node representing a failed effect is the intended effect). The 

path to an alternative goal can be reasonably assumed to be shorter than the path to 

                                                             
 

 

4 As described by Kuter et al., 2008. 
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an actual goal of the problem. This enhancement is intended to reduce the effort 

required for calculating the FF goal-distance heuristic.  

  Nondeterministic planners that generate strong-cyclic solutions using 

algorithms other than NDP include MBP (Cimatti et al., 2003), which uses 

symbolic model-checking and Binary Decision Diagrams (BDDs) for compact state 

representation; Gamer (Kissmann and  Edelkamp, 2009), which also uses BDDs 

and converts nondeterministic planning problems to two-player turn-based games, 

and the system of Mattmüller et al. (2010), which uses LAO* heuristic search 

(Hansen and Zilberstein, 2001). 

 

2.5 Naturally and Artificially Intelligent Planners: Cognitive 

Science and Automated Planning 

Planning is a fundamental human cognitive activity: it is our approach to tasks 

ranging from minor day-to-day challenges of limited consequence to complex 

endeavors and the pursuit of long-term goals (Berger, Guilford, and Christensen, 

1957; Hayes-Roth and Hayes-Roth, 1979; Mumford, Schultz, and Van Doorn, 

2001). It is also a crucial component of communication and social interaction 

(Berger and DiBattista, 1993; Berger, 2007; Dillard, 2008; Miller Henningsen et 

al., 2011). In a Cognitive Science experiment on conversational tactics, it was 

estimated that 44% of the subjects’ conscious thoughts were dedicated to the goals 
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they were pursuing and to planning for these goals (Waldron, 1990). Berger and 

DiBattista (1993) consider this to be an underestimation.   

  Artificial Intelligence and the study of human approaches to problem-solving 

(including planning), have been evolving in a mutually-influencing manner. Newell 

and Simon, co-authors of a seminal AI general-purpose problem-solving algorithm 

(Newell, Shaw, and Simon, 1959) are also the creators of a model of human 

problem solving (Newell and Simon, 1972). This model is based on the idea of 

search in a problem space consisting of various states, with operators providing 

transition from one state to another. Of course, these are the general principles at 

the basis of AI search of the type used by heuristic search planners like FF (Chapter 

2.2.1).  

  Other concepts borrowed by artificial planners from human ones include plan 

adaptation (Berger and DiBattista, 1993; Bettina, 1999) and the use of heuristics in 

search (Klahr, Fay, and Dunbar, 1993). In what case-based planning is concerned, 

it has already been explained (Chapter 2.3) that this type of planning has been 

designed specifically to emulate analogy-based reasoning as conducted by human 

problem-solvers (Hammond, 1990; Keane, 1996; Spalazzi, 2001).  

Still, human problem-solving approaches remain elusive. Human planners skip 

steps in the planning process (Koedinger and Anderson, 1990), and, at times, they 

are not even fully aware of their own planning processes/plans (Dillard, 2008): 

while it can be argued that artificially intelligent systems are never actually aware 
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of anything, their stages of the planning process are precisely defined and 

delimitated, and the generated plans or partial plans are clearly formulated and 

immediately available for inspection, rather than being vague mental constructs.  

Of course, machine problem-solving does not have to mimic human problem-

solving in order to be successful. People are certainly not infallible problem-

solvers. The effectiveness and efficiency of human planning can be hindered not 

only by insufficient information or problem-solving experience, or a limited 

memory (all of which have some type of correspondent in machine problem-

solvers), but also by factors not as obviously related to planning, such as shyness 

and nervousness (Berger and Bell, 1988), fatigue, illness, and rival claims upon the 

planner’s attention. 

Even more subtle weaknesses exist. While the creation of analogies, from the 

passable to the brilliant, in everything from low-brow daily conversation to science 

and high art is something we may see as fundamentally human (an assumption at 

the basis of the analogy-based case-based planning framework), it has been shown 

that people are not always adept at identifying analogies that reflect high-level 

relations and are deep, rather than superficial (Dunbar, 2001). Specifically, this 

weakness manifests in experimental contexts in which subjects are provided with a 

source and target object, and required to find analogies between the two (rather 

than producing the complete analogy themselves, i.e. choosing source and target 

objects as well as identifying similarities). The reason for this has been 
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hypothesized as being that typical experimental conditions are not conducive to 

knowledge encoding and retrieval based on deep, relational features, rather than 

superficial ones.  

While it is true that diversity-aware automated problem solving (as explored 

herein) is inspired by human problem-solvers, who, at their best, are flexible, 

adaptable, and open to out-of-the-box solutions (Berger, Guilford, and Christensen, 

1957; Keane, 1996; Mumford, Schultz, and Van Doorn, 2001), human can also fall 

prey to rigidity and reticence to consider alternative courses of action. Lack of 

experience, stress, tiredness, environment conditions, and other factors, as 

described above, can contribute to problem-solving difficulties including the failure 

to consider possible alternative solutions. Also, human problem-solvers may be 

faced with spaces of possible solutions that are too vast for them to explore 

exhaustively.  

While AI planning was initially based on the idea of emulating the human 

cognitive activity that is its namesake, work like that presented herein has a 

different focus: that of supporting human problem-solving or offering an alternative 

to it, rather than faithfully replicating its underlying processes. Out of the four 

categories of definitions of artificially intelligent systems of Russell and Norvig 

(2009), this approach falls under that of acting rationally (rather than acting or 

thinking like humans, or thinking rationally). The objective is useful behavior that 
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can compensate for human problem-solving weakness or take over when human 

problem-solvers are unavailable. 

In application domains characterized by large search spaces, diversity-aware 

problem-solving systems can help human users by intelligently guiding navigation 

through the solution space, highlighting viable, meaningfully-different alternative 

solutions. Such support could, for instance, be incorporated into mixed-initiative 

planning: an automated diversity-aware planning system could present its human 

collaborator with meaningfully different alternatives for achieving a specified set of 

goals/subgoals.   

Here is another, more specific, example. The DivNDP algorithm (Chapter 6) 

produces policies (solutions to nondeterministic planning problems), which can be 

seen as the equivalent of finite-state machines (Houlette and Fu, 2003), in that they 

describe transitions, brought about by actions/events, between different states of a 

system. Finite-state machines are a commonly-used model for artificially-

intelligent non-player characters in computer games. A system like DivNDP that 

automatically produces multiple, diverse policies/finite-state machines modeling 

game-character behavior can relieve game designers of some of the effort 

pertaining to creating vast game worlds populated by numerous characters. 

Human expertise can still be put to use, even in completely automated diverse 

planning, through human-defined qualitative distance metrics. Alternatively, 

automatically learning distance metrics (a proposed extension to the work 
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presented herein, see Chapter 10.1) is a possible way of coming up with good, 

meaningful distance metrics without human intervention and effort. 

  Finally, I will make a brief note of the fact that computer games, as used as a 

testbed herein, have been used not only in Artificial Intelligence, but also in 

Cognitive Science, to study human learning and problem-solving (Ko, 2002).  
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3  Solution Diversity 

In the context of this work, diverse solution generation means producing multiple 

solutions (plans or policies) to the same planning problem, with the specific 

intention of ensuring that the diversity of this set of solutions is high. I will 

introduce the formal definitions for solution-set diversity and for diverse solution 

generation systems after necessary preliminaries. 

Definition 17. Let π and π’ ϵ П be solutions to a planning problem P.  A solution 

distance metric D(π,π’), D: П × П → [0,∞), or D: П × П → [0,1] if the distance 

metric has been normalized, is a measure of the dissimilarity between π and π’. 

Distance metrics can be either quantitative or qualitative, as described in 

Chapter 3.2. It is important to note that the problem of comparing plans and 

policies can be a complex task: each plan/policy may have an arbitrary number of 

actions/state-action pairs, each action with any number of parameters. Also, it is 

difficult to infer meaningful differences from the low-level structure of plans and 

policies. 

Definition 18. Let П be a set of solutions (plans or policies) to a planning problem. 

The diversity Div(П) of П is the average pair-wise distance between solutions in  

П (Equation 2).  
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                                                          (2)

   

In Equation 2, π is a solution to a planning problem (a plan in deterministic 

planning, a policy in nondeterministic planning), П is a non-empty solution set, and 

D is a solution distance metric. Similar formulas have been used by Myers and Lee 

(1999) in planning, and Smyth and McClave (2001) in case-based reasoning.  

Definition 19. A diverse solution generation system DivPL is a planning system 

which receives as input a planning problem P (either deterministic or 

nondeterministic) and returns as output a set П of solutions to P, where one of the 

criteria used in generating П is that of increasing Div(П) (Equation 2). 

 In this work, each presented diverse planning system DivPL is based on a 

regular, non-diverse planning system PL.  

Definition 20. Let π be a (complete or partial) solution π to a planning problem P 

and let П be a set of complete solutions to P. The relative diversity between π and 

П is the average distance between π and each solution πi ϵ П. Given solution 

distance metric D, the relative diversity RelDiv(π, П) of a solution π relative to П is 

defined in Equation 3.  
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                            (3)                 

 

While solution set diversity (Equation 2) can be used to assess the diversity of 

an already generated set of solutions, relative diversity is used at planning time to 

evaluate candidate solutions, as will be shown in the next subchapter. Relative 

diversity was previously used by Smyth and McClave (2001) for creating diversity 

in case-based reasoning for analysis tasks. 

 

3.1 General Framework for Diverse Solution Generation 

I now describe the general diverse planning framework (Algorithm 3) 

encompassing the main diverse plan generation algorithms that are presented 

herein: the DivFF diverse heuristic-search-based planner (Chapter 4.1), the 

DivCBP diverse case-based planner (Chapter 4.2), and the DivNDP diverse 

nondeterministic planner (Chapter 6).  

All these systems are based on the same idea of repeatedly generating solutions 

using a composite candidate-solution evaluation criterion (Equation 1, where π is a 

solution and   is a non-empty set of solutions) balancing relative diversity with 

adequacy of the candidate solution plan. Equation 1 is repeated below for 

convenience: 
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                                                       (1) 

 

 In Equation 1, solution adequacy (SolAdequacy) is a candidate solution 

evaluation criterion specific to each planning technique: e.g. estimated goal 

distance in heuristic-search planning and case similarity in case-based planning. 

Relative diversity (RelDiv) is as previously defined (Definition 20, Equation 3) 

and, in this context, represents the estimated diversity of the set of solutions that 

will be obtained by completing the current partial candidate solution (if the 

candidate solution is not an already-complete solution that only needs to be 

retrieved, as in case-based planning) and adding it to the set of previously generated 

solutions. By modifying the parameter α in Equation 1, one can increase the 

emphasis on either solution adequacy or relative diversity. 

In this framework, generation of a set of k diverse solutions is conducted as 

indicated in the pseudocode below (Algorithm 3). First, a solution is generated 

using the regular (non-diverse) variant of the planning system. This variant uses 

only a solution adequacy criterion (SolAdequacy in Equation 1) to assess candidate 

solutions. Then, k-1 additional plans are generated using a modified, diversity-

aware version of the planning system. This variant uses EvalCrit (Equation 1) to 

assess candidate solutions.  
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Algorithm 3: General Framework for Iterative Diverse Solution Generation  

Based on Solution Distance Metrics 

Input: PL – the regular (non-diverse) planning system, P – the planning problem, 

and k - the number of diverse solutions to be generated.  

Output: the set of diverse solutions Π.  

π - a solution (plan or policy),  πC - a candidate solution 

SolAdequacyPL - the solution adequacy criterion specific to planning system PL 

RelDiv - relative solution diversity as described in Equation 3 

generateSolution(Crit(πC), P) generates a solution for problem P using criterion 

Crit to assess the candidate solution πC. 

DivPL(PL, P, k) 

1. Π ← {}  

2. π ← generateSolution(SolAdequacyPL(πC), P) 

3. Add π to Π 

4. Repeat 

5.       π ← generateSolution(αSolAdequacyPL(πC)+(1-α)RelDiv(πC,  ), P) 

6.       Add π to Π 

7. Until |Π| = k solutions have been generated 
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8. Return Π 

 

The soundness and completeness of DivPL (Algorithm 3) depend on the 

soundness and completeness of the regular planner PL. Note that, as the heuristic is 

modified to include the diversity criterion, heuristic admissibility is no longer 

guaranteed. Only the optimality of the first solution in the generated set may be 

guaranteed, and this only if PL itself guarantees it. 

The diverse heuristic planner of Srivastava et al. (2007) is subsumed by the 

general framework presented above, but it is only used to generate quantitatively-

diverse plans, not qualitatively-diverse ones (this distinction is explained in the 

next subchapter). 

 

3.2 Quantitative and Qualitative Solution Distance Metrics 

I know describe two categories of solution distance metrics which can be used as 

the basis of solution-set diversity evaluations (Equations 2 and 3). 

Quantitative solution distance metrics are domain-independent and have the 

advantage of not requiring domain knowledge aside from the minimal domain 

description specific to each planning technique (e.g. a state-transition model in 

heuristic search planning; a case base and, possibly, a domain-specific adaptation 

method in case-based planning).  
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Quantitative distance, therefore, does not require plan/policy elements (such as 

actions) to be interpreted in any domain-specific way. It follows that any two 

distinct solution elements are considered equally distant from one another (e.g. in a 

perfume-making domain, the action of adding freesia essence to a fragrance is 

considered equally distant from the action of adding grapefruit essence and the 

action of adding hyacinth essence). This approach is inflexible, as well as likely to 

produce misleading results: two solutions identified as distant using a quantitative, 

action-set metric (such as Equation 4) could be essentially similar (e.g. in combat-

based games, two plans may have very little overlap in terms of the actions they 

include, while being both implementations of a defensive strategy).  

Equation 4 is an example of a quantitative plan distance metric (a normalized 

version of the metric used by Fox et al., 2006).    

 

         π π     
          ’ 

           ’  
                                             (4)  

 

In Equation 4, common(π, π’) is the  number of actions that plans π and π’ have 

in common, and | | is the number of actions in plan  . Distance is computed by 

counting the number of actions which appear in strictly one of the compared plans, 

then normalizing the result. 
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Equation 4 is a variation of the Jaccard distance for sets (Equation 5, where A 

and B are sets). 

 

                   
            

     
                                             (5)  

 

Qualitative solution distance metrics are based on domain-specific 

knowledge, thus having the potential to reflect subtler semantic differences that a 

human expert might take into account when comparing two solutions (e.g. even if 

consisting of otherwise identical actions, a plan involving first-class air-travel will, 

from the point of view of a budget-conscious customer, be very different from its 

economy-class counterpart).  

Qualitative distance metrics are defined based on interpretation, using domain 

knowledge, of the components of solutions (e.g. in a perfume-making domain: 

freesia and hyacinth are both floral essences, but grapefruit is a citrus essence; in a 

travel domain: a first-class plane ticket is expensive, while an economy one is 

affordable).  

As multiple qualitative distance metrics can be defined for the same domain, it 

is possible to vary the set of features along which one would like to see diversity 

(e.g. in a travel domain, variation of ticket cost, but not means of transportation). 

This has practical advantage over quantitative diversity.  
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However, with the greater potential benefits of qualitatively-diverse-solution 

generation, comes the greater difficulty of achieving it. Unlike quantitative 

diversity, which is domain-independent, qualitative diversity requires domain 

knowledge to be encoded and utilized. Previously, this was achieved by Myers and 

Lee (1999). Their approach (see Chapter 9.3) assumes the availability of a 

metatheory providing additional domain information allowing plans to be 

compared in terms of high-level features, such as the objects which fulfill various 

roles in plans and the domain-specific characteristics of various types of actions 

(e.g. the speed of travel by a given means of transportation). The approach taken 

herein makes no such assumption, and is based on the observation that qualitatively 

diverse solutions can be generated without a comprehensive qualitative model of 

the domain: it is sufficient to equip a qualitative distance metric with minimal 

knowledge regarding the select features it should base its differentiation between 

solutions on, and use this metric as part of the solution generation criterion. 

Multiple qualitative distance metrics can be defined for any domain, each metric 

reflecting the minimal information necessary for a particular diverse solution 

generation task. These metrics can then be used separately or compounded as 

needed. 

The diverse-solution generation algorithms proposed herein can be used with 

any distance metric, either quantitative or qualitative. As long as they are provided 

with the necessary metrics, these algorithms can generate both quantitatively-
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diverse and qualitatively-diverse sets of solutions, without requiring a domain 

metatheory.  

 

3.3 Qualitative and Quantitative Solution Diversity in an 

Illustrative Domain: The Wargus Real-Time-Strategy Game 

I now introduce Wargus, a planning domain based on characteristics of the Wargus 

real-time strategy game (Ontañón et al., 2010). It is used herein to exemplify 

quantitative and qualitative solution diversity, and later as a testbed for the 

evaluation of the proposed diverse planning algorithms. It was chosen because real-

time strategy games are characterized by many of the complexities of domains of 

practical interest: they are dynamic, nondeterministic, and adversarial. Due to these 

characteristics, they make solid, challenging evaluation environments for Artificial 

Intelligence techniques (Ontañón et al., 2010). Also, there are possibilities for 

meaningful diversity in this domain: playable characters have varied characteristics 

and they are capable of engaging in activities of different types: not only battle, but 

also harvesting and building. 
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Assume the following game configuration5: the types of available fighting units 

are peasants, soldiers, archers and mages. Units vary in terms of attack capabilities 

(e.g. soldiers are close-combat units, archers and mages long-range attack units) 

and robustness (e.g. peasants are the weakest units by far).  

The game score is computed by adding points for enemy kills and subtracting 

points for loss of units. The amount added/subtracted on the destruction of a unit 

depends on the type of the unit in question.  

The actions that can be executed by units are: move (the unit attempts to move 

to a specified location on the map), patrol (the unit moves back and forth between 

its current location and a specified location on the map), and attack (the unit attacks 

any enemies at a specified location). The action signature is <Action_name 

(parameter1, parameter2)>, where parameter1 specifies the unit which will 

undertake the action and parameter2 specifies the target location of the action (e.g. 

action Move(soldier1, loc1) instructs unit soldier1 to move to the map location 

loc1).  

There are two teams: one is controlled using the generated plans, the other is 

controlled by the built-in enemy AI system.  

                                                             
 

 

5 The actual configurations used in the experimental evaluation will vary in ways described in 
Chapter 8. 
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Assume, for exemplification, a deterministic case-based planning context, in 

which cases are retrieved from the case base using a retrieval criterion specifying 

that the set of retrieved-case solution plans should be as diverse as possible based 

on a given plan distance metric. Assume that the case solutions in the case base are 

the 3 plans in Figure 1, and assume that Plan 1 has already been retrieved by 

random choice, and one is now trying to find a second plan, out of the two 

remaining ones, that is as dissimilar as possible to Plan 1, making the resulting pair 

of retrieved plans as diverse as possible. 

 

Plan 1: Move (soldier1, loc1), Move (soldier2, loc2),     

Move (mage1, loc3), Attack (soldier3, loc4) 

Plan 2: Attack (soldier2, loc4) 

Plan 3: Move (soldier1, loc1), Move (soldier2, loc2), 

Move (mage1, loc3), Attack (archer1, loc4) 

 
Figure 1. Sample plans for a real-time strategy game domain. The action parameters 

specify the unit which will be executing the action, and the map location at which the 

action will take place. 
 

 

First, assume that the quantitative distance metric DQuant (Equation 4) is used 

for retrieval. The plan that is chosen is Plan 2: it shares no actions with Plan 1 (the 

attack actions in the two plans use distinct soldier units), therefore the distance 

between them is 1 (the maximum possible distance).  
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 However, an informed analysis, using domain-specific information, of the 

individual actions would tell us that an attack action indicates an offensive 

approach to the game, while a move action could be interpreted in various ways: 

moving to a location on one’s own side of the map may be considered a neutral or 

defensive action, while attempting to move towards the enemy side is likely 

offensive, indicating the intention to engage in battle. Therefore, Plans 1 and 2 may 

not be meaningfully different at all. They both culminate in an attack action at the 

same map location, using units, which, while distinct, are of the same type 

(soldiers). The three other actions that differentiate Plan 1 from Plan 2 may not be 

of great consequence at all, if the locations the units are moving to are on the non-

hostile side of the map and not very far from the units’ initial locations.  

 Let us now use, instead, a qualitative distance metric which considers two 

plans maximally distant if they attack using a different type of unit, and identical if 

they use units of the same type to attack, even if the units are distinct (this metric as 

well as a more complex variant of it will be used in the experimental evaluation in 

Chapter 8).  

This new criterion assesses Plan 2 as being maximally similar to Plan 1: they 

use units of the same type to attack, and the other actions in Plan 1 are ignored for 

the purposes of the comparison, as they were not specified in the distance metric 

definition (this is an example of a qualitative metric including only the minimal 

amount of domain information that is relevant to the task at hand). As a result, the 
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qualitative method picks Plan 3, which attacks using an archer, a unit different from 

a soldier: it is long-range, weaker in close combat, and its loss leads to a different 

score penalty than the loss of a soldier. This makes the selected plans significantly 

different in light of the rules of the game. 

 

3.4 Goal-Achievement and Inflation-Based Distance 

I now define two subtypes of qualitative solution distance metrics, based on 

whether they reflect different ways of achieving the goals of the problem: goal-

achievement distance and inflation-based distance.  

  Goal-achievement distance reflects differences between solutions in terms of 

the way in which they achieve the goals, with different solutions embodying 

different approaches to achieving a given goal or set of goals. 

  Inflation-based distance reflects solution differences that are not related to 

the way in which the goals are achieved.  

  Inflation, i.e. the addition, for the sake of increasing plan/policy-set diversity, 

of actions/state-action pairs which do not specifically contribute to achieving the 

goals, is considered undesirable when it also leads to an unnecessary increase in the 

size of solutions (Coman and Munoz-Avila, 2011a).  

  While this may certainly be the case with meaningless inflation (e.g. as will be 

shown, inflation created using quantitative distance metrics to generate solutions), 

there are various planning domains in which inflation can be beneficial. For 



www.manaraa.com

64 
 
 

 

example, in planning for interactive storytelling, larger solution plans/policies may 

include more side-stories revealing characters’ personalities and motivations, while 

a plan/policy execution path which is the shortest path from the initial state to a 

goal state may prove comparatively dull.  

  I once again exemplify both these types of solution distance in the Wargus 

domain. This time, policies (solutions of nondeterministic planning problems) are 

used for exemplification.  

  Consider a real-time strategy game environment in which character units of 

various types (e.g. peasants, soldiers, archers, mages) can fight enemies, harvest 

resources, build villages, etc. Assume that the goal is for the enemy base to be 

destroyed.  

  In such an environment, the following is a set of policies which are diverse in 

terms of goal-achievement.  

  Assume a state in which all units are alive and located near the enemy’s base. 

For this state, the specified action is soldier attack in policy 1, mage attack in 

policy 2, and archer attack in policy 3. 

  These three policies differ solely in the way in which they achieve the goal; all 

three attacks are legitimate ways of attempting to reach the goal, but they are 

significantly different, because different unit types have different strengths and 

weaknesses. Note that no inflation (the addition of state-action pairs which are not 

essential for reaching the goal) is necessary to create diversity in this example. 
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  Inflation-based plan/policy distance allows us to introduce side-stories which 

simulate compelling character variation in terms of personality traits.  

  For example: policy 1 includes a detour to the country-side, where the units 

attack a non-hostile village (such behavior reflects ruthless personalities), policy 2 

includes building an extension to a village (indicative of kindness), and policy 3 

includes collecting a treasure (indicative of greed).  

  The actions which create diversity in these policies do not contribute to 

achieving the goal, but they can make for varied game experiences and contribute 

to characterization. 

 

3.5 Example Applications of Diverse Solutions 

Here is a simple illustrative example of a diverse plan set in use. Suppose we have 

a multi-purpose social robot that vacuums floors, but is also capable of engaging in 

simple interaction with the people it encounters, and of improving its interaction 

skills through diligent practice. The robot’s current mission is to vacuum all floors 

in a large office environment. The general mood of the people in the environment is 

not known at planning time, but can be guessed right before execution.  

The planning system does not generate only one plan which achieves the 

robot’s mission, but three diverse ones. The first plan ensures that the robot 

encounters as many people as possible: this is useful if the mood in the office 
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happens to be cheerful, and people are inclined to indulge the robot’s small-talk, 

thus helping it learn. The second plan has the robot avoid encounters, thus 

preventing it from becoming a nuisance to employees when the tension is high 

inside the office. The third plan steers the robot towards areas frequented by people 

generally well-disposed towards it: this strikes a balance between learning and 

trying not to be a source of annoyance.  

If any of these plans ends in non-diagnosable failure (e.g. the chatty robot has 

been knocked over by an irritated employee), the robot can return to its initial state 

and, rather than starting again with the same plan, run the plan in the diverse set 

which is the most dissimilar to the one which has failed, thus having a higher 

likelihood of succeeding (e.g. avoid encounters, rather than seek them).  

Plan diversity has been pointed out to be particularly useful in situations in 

which user preferences are assumed to exist, but are not explicitly provided at 

planning time (Nguyen et al, 2012), because eliciting or encoding these preferences 

is unfeasible or prohibitively difficult, or because preferences are weakly defined 

and variable (as in the fluctuating office mood example).  

  In military (Myers, 2006) and other adversarial planning domains, diverse 

plans can reflect different strategies (such as offensive vs. defensive). In plan-based 

intrusion-detection (Boddy et al., 2005), they can raise awareness of manifold 

threats. Generating sets of diverse redundant plans is also a possible approach to 
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fault tolerance (Lussier et al., 2007): if one plan fails, another, dissimilar one is 

more likely to succeed than a very similar one.  

  In computer game environments, uses of diversity-aware planning have 

already been introduced herein, and will be further demonstrated in the 

experimental evaluation (Chapter 8). 

  Nondeterministic-planning diversity is explored, herein, in a non-probabilistic 

setting, as solution diversity based on distance metrics is particularly appropriate in 

such a context: unlike in probabilistic planning, explicit objective functions are not 

assumed to be given, so one cannot obtain diversity by generating the Pareto set of 

solutions, optimizing several objectives, as done for probabilistic planning (Bryce 

et al., 2007). Also, it is here assumed that planning preferences may exist, but are 

unknown to the planner.  Nguyen et al. (2012) point out that generating diverse 

solution sets is particularly valuable in such situations.  

  Of course, there are situations in which, rather than diverse solutions, we are 

searching for solutions which are as similar as possible to a previously-generated 

solution which, for whatever reason, cannot be used as it is (Fox et al., 2006). This 

necessity arises, for example, in high-risk, high-cost environments (robotic surgery 

and, once again, the Mars Rovers come to mind), or multi-agent environments in 

which commitments to other agents must be honored. Systems addressing this need 

have already been proposed (see Chapter 9.2). 
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4 Generating Diverse Solutions to Deterministic 

Planning Problems 

Having introduced the general framework for diverse solution generation 

(Algorithm 3), I now describe diverse-solution-generation algorithms, which 

adhere to this framework, for solving deterministic planning problems. These 

algorithms use heuristic search planning and case-based planning techniques. As 

they solve deterministic planning problems, they generate sets of diverse plans 

(sequences of actions). 

 

4.1 DivFF: Diverse Heuristic Search Planning 

Heuristic search planning is particularly well-suited for modification according to 

the general diverse planning framework, as it generates plans by iterative 

refinement of partial solutions based on solution adequacy criteria, which can be 

adjusted to include diversity requirements. 

  I now present DivHPL (Algorithm 4), a general algorithm for diverse heuristic 

planning for deterministic planning problems, which makes use of a regular, non-

diverse heuristic planning system PL (Coman and Muñoz-Avila, 2011a). The 

algorithm itself is general enough to be implemented using any heuristic-search 
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planner (conducting either state-space or plan-space search). Herein, it is 

implemented using the FF planner (Chapter 2.2.1), as DivFF. 

  The general diverse heuristic planning algorithm for generating a set of k 

diverse plans consists of the following steps:  

- the heuristic-search planner PL (with its regular heuristic hPL) is used to 

generate the first plan in the set;  

- a modified, diversity-aware version of PL is run k-1 times, each time 

generating a plan using a composite criterion hmixed (Equation 6). hmixed 

combines two criteria for candidate selection: an estimate, based on a plan-

distance metric, of the relative diversity between a candidate plan and the 

plan set П generated so far, and the regular heuristic of PL, hPL.  

 

                                                   (6) 

 
 
  In Equation 6, hdiversity is defined as in Equation 7. 

 

                                                                         (7) 

 

  In Equation 7, RelDiv is defined as in Equation 3 and the plan πrelax is a relaxed 

solution of planning problem P, that augments π. It is constructed using the relaxed 

plan πrelaxPL, produced by PL. With FF (Hoffmann and Nebel, 2001), for example, 
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πrelax can be obtained by appending πrelaxPL (i.e. the sequence of actions in the 

relaxed domain leading from the current state to the goal state) to the current partial 

plan π (i.e., the sequence of actions chosen so far, leading from the initial state to 

the current state).  

  

Algorithm 4: DivHPL - Diverse Heuristic-Search Planning  

Input: PL - a heuristic search planner, hmixed - a heuristic function that evaluates a 

candidate partial plan (Equation 6), P - the planning problem, and k - the number of 

diverse plans to be generated.  

Output: П, a set of diverse solution plans to the planning problem.   

generatePlan(PL, P) runs an unmodified version of the planner on problem P.  

getCandidates(P, π) returns the set of candidate partial solutions to problem P in 

the neighborhood of partial solution π. 

selectCandidate(C, hmixed, П) chooses a candidate partial plan that maximizes 

hmixed, instead of one that minimizes the regular planning heuristic, hPL 

DivHPL (PL, hmixed, P, k)  

1.  П ← {}     

2.    π ← generatePlan(PL, P)  

3.  Add π to П 

4.  Repeat 

5.   π ← BalancedPlan(PL, hmixed, P, П)  
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6.   Add π to ∏ 

7.  Until |∏| = k plans have been generated 

8.  Return П 

 

BalancedPlan(PL, hmixed, P, П)  

9.  π ← empty-plan 

10. Repeat  

11.  C ← getCandidates(P, π)  

12.  π ← selectCandidate(C, hmixed, П)  

13. Until π is a solution for P 

14. Return π  

 

 

  It should be noted that Equation 6 is an instantiation of Equation 1, where 

solution adequacy is the heuristic used by PL to assess candidate solutions. The 

regular planning heuristic (hPL) is subtracted from the diversity metric (hdiversity) 

because one must seek to minimize hPL (an estimate of the effort required for 

finding a solution), and to maximize hdiversity (an estimate of the diversity of the 

generated plan set). α is a parameter used for varying the complementary weights 

assigned to the two criteria. 
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DivFF is an implementation of Algorithm 4, where PL is the heuristic search 

planner FF (Hoffman and Nebel, 2001). As explained in Chapter 2.2.1, FF conducts 

search in the space of possible states, and candidate states are assessed using a goal 

distance heuristic, which estimates the distance from the current candidate state to 

the goal state. The FF heuristic value of a candidate state is the length of the 

solution plan of a relaxation of the planning problem. 

DivFF bases its evaluation of candidate states on a composite evaluation 

criterion taking into account both the FF heuristic value associated to the state and 

the estimated diversity of the set of plans that will have been generated once the 

current plan is completed. For the purposes of the relative-diversity assessment 

(Equation 3), a candidate solution plan is obtained by merging the partial plan from 

the initial state to the current candidate state with the relaxed-problem plan 

generated by FF (hence, a candidate solution is an estimate of the complete final 

solution). 

 In the context of DivFF, Line 2 in Algorithm 3 corresponds to generating a 

plan using regular FF, while lines 4-7 correspond to generating k-1 plans using the 

composite solution-evaluation criterion described in Equation 8 below, which is a 

variant of Equation 6 and Equation 1 (solution adequacy is computed using the FF 

heuristic).  
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                                                      (8) 

 

 In Equation 8, hFF is the regular FF heuristic, πc is a candidate plan, Π is the set 

of previously-generated plans, and RelDiv is defined as in Equation 3. 

 

4.2 DivCBP: Diverse Case-Based Planning 

It has been shown how diverse solution plans can be generated using heuristic 

search planning techniques. Next, the general diverse solution generation 

framework will be applied to case-based planning. 

 The goal to achieve solution diversity in case-based planning is motivated by 

the success obtained by incorporating diversity considerations into case-based 

recommender systems, which solve analysis tasks (Smyth and McClave, 2001; 

Shimazu, 2001; McSherry, 2002; McGinty and Smyth, 2003; Bridge and Kelly, 

2006). 

 Similarly to the approach taken with case-based reasoning for analysis tasks, 

diverse solution plan sets can be obtained by modifying the set of case-based 

planning retrieval criteria to include diversity considerations. However, other 

characteristics specific to diversity for analysis tasks are not as easily transferable 

to planning, which is a synthesis task. Specifically, for analysis tasks, both the 

similarity and diversity retrieval criteria are applied to the problem component of 
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the case (which, for planning problems, would typically include the initial and final 

states). It is shown why this approach may be problematic in case-based planning, 

making it necessary to retrieve based on the diversity of solutions (plans), rather 

than on that of the problems (Coman and Muñoz-Avila, 2010). 

 Therefore, the exploration of diversity in case-based planning begins with a 

comparative evaluation of state (problem) diversity (diversity based on the initial 

state and/or final state) and plan (solution) diversity (diversity based on the 

solution plans).  

 Next, I move on to a comparative evaluation of quantitative and qualitative 

distance in case-based planning. Both these types of distance are demonstrated 

using DivCBP (Coman and Muñoz-Avila, 2011b), a diverse case-based planner 

based on the general diverse planning framework (Algorithm 3). DivCBP retrieves 

cases based on a composite criterion in which solution adequacy (a component of 

Equation 1) is the case-problem similarity to the new problem, the typical case-

based reasoning retrieval criterion. 

All the presented diverse case-based planning algorithms use a 

transformational-analogy (Spalazzi, 2001) case-based planning approach, in which 

the contents of a case are a problem (consisting of an initial and/or final state) and a 

solution, consisting of a plan. The new problem is defined in terms of initial and/or 

final state.  
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4.2.1 State and Plan Diversity in Case-Based Planning 

Two types of diversity in case-based planning are described and assessed. Each of 

them targets a different component of the cases considered for retrieval:  

- state diversity characterizes cases that are dissimilar in terms of initial and, 

possibly, final state, but may contain the same plan or very similar plans; 

-  plan diversity characterizes cases with diverse plans, representing 

alternative solutions to the planning problem.  

These types of diversity are demonstrated using three case-based planning case 

retrieval algorithms.  

The first and second algorithms are tailored specifically for state and plan 

diversity, respectively. 

The third algorithm is diversity-aware Greedy retrieval, a technique previously 

introduced for similar purposes in recommender systems (Smyth and McClave, 

2001). While, originally, it was used only for problem diversity, herein, it produces 

both problem (state) and solution (plan) diversity. 

 

4.2.2 Motivation Example: State and Plan Diversity in Wargus 

To exemplify state and plan diversity in Wargus, assume that the case base contains 

only three cases, representing the game situations in Figure 2, and that one is only 

looking for a pair of maximally-diverse cases (ignoring, for now, the criterion of 
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similarity to a new problem). The problems are defined in terms of the initial game 

state.  

 

 

               c1                      c2 

 

  
 

c3 
 

Figure 2. Case pairs (c1, c2) and (c2, c3) are state-diverse, while pairs (c1, c3) and (c2, c3) 

are plan-diverse. c1 and c2 are instances of the same offensive strategy (all units attack), 
while c3 exemplifies a distinct defensive strategy (soldier units patrol, peasant units stay 

put).  

 

The three cases are c1, c2, and c3, as described below. 
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c1: The initial state configuration includes three soldier units and two peasant 

units. The plan consists of all units attacking. 

c2: The initial state configuration includes four soldier units and no peasant 

units. The plan, once again, consists of all units attacking. 

c3: The initial state configuration includes three soldier units and two peasant 

units (it is identical to that of c1). The plan consists of the soldiers patrolling given 

areas in expectation of an attack, while the weaker peasant units stay put, not 

“willingly” exposing themselves to injury. 

c1 and c2 represent purely offensive strategies, whereas c3 is defensive.  

A retrieval algorithm based on state diversity (diversity of initial states only, in 

the experiment, for reasons explained later on) would select either c1 and c2 or c2 

and c3 (either c1 or c3 would always be discarded, as they have identical initial 

states). Assuming, therefore, that “tie” situations such as this are handled by 

choosing one of the multiple cases with identical initial states randomly, in this 

simple example, we have a 0.5 probability of retrieving two offensive strategies, 

which, on being adapted to the new problem, will likely translate to solution plans 

reflecting identical strategies (it is reasonable to assume that an adaptation of an 

offensive plan will also be offensive). 

If retrieving based on plan distance, however, we are guaranteed to select 

either c1 and c3 or c2 and c3. That is, with a probability of 1, we will retrieve two 
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plans that are truly different in the strategy they incorporate, and will generate 

distinct adaptations. 

Next, I present two diverse-plan-generation algorithms specifically tailored for 

state diversity and plan diversity, respectively (Chapters 4.2.3 and 4.2.4). Note that 

these algorithms are not subsumed by the general diverse-planning framework 

(Algorithm 3) and they are not intended as major contributions of this work, but 

have only been selected so as to create state and plan diversity in the evaluation 

environment. It is these types of diversity that are showcased, evaluated, and 

compared here, not the algorithms themselves. It is important to note this, as these 

two algorithms are not guaranteed to produce good results on all domains and 

problems, although they do so in the experimental environment presented here: in 

these experiments, they produce maximal state and plan diversity, facilitating the 

comparison the two. The greedy diverse case-based planning algorithm that is 

subsumed by the general diverse planning framework (and is at the basis of 

DivCBP) will be introduced in Chapter 4.2.5. 

 

4.2.3 State Diversity through Similarity Clusters (SDSC) 

The Similarity Clusters retrieval algorithm (Algorithm 5) is designed specifically 

for retrieving cases which are diverse based on their problem description (states).  

It works as follows.  
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First, cases are sorted in reverse order of their similarity to the new problem, 

i.e. similarity between the case problem and the new problem. Cases that are 

similar to one another are clustered together. To obtain a set of k cases that are 

similar to the new problem, as well as state-diverse from one another (so that there 

are no two identical state-similarity scores in the retrieved set), one case from each 

of the first k clusters is randomly chosen. It is assumed here that at least k clusters 

will be formed: this holds in the experimental environment. 

 

Algorithm 5: SDSC - State Diversity through Similarity Clusters 

Input: newProb – new problem, CB – case base, k – number of cases to be 

retrieved.  

Output: R – the set of retrieved cases. 

selectRandomCaseFromCluster(CB, i) selects a case from the i
th
 cluster of case 

base CB randomly. 

SDSC(newProb, CB, k) 

1. CB’ ← cases in CB sorted in decreasing order of their similarity to newProb 

2.  R ← {} 

3.  For i ← 1 to k 

4.      c ← selectRandomCaseFromCluster(CB’, i) 

5.     R ← R   {c} 

6.  Return R 
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Note that it is not guaranteed that Algorithm 5 will retrieve diverse cases in all 

domains: cases with different similarity levels to the problem can still be similar to 

one another. The algorithm was chosen because it successfully produces sets of 

state-diverse cases in the application domain. 

 

4.2.4 Plan Diversity through Threshold-based Selection (PDTS) 

The Threshold-based Selection retrieval algorithm (Algorithm 6) is tailored 

specifically for retrieving cases which are diverse based on their solutions (plans).  

It works as described below. 

Cases in the case base CB are sorted in reverse order of their similarity to the 

new problem: CB’ is this sorted list of cases. The case in CB’ which is the most 

similar to the new problem is added to R.  For each case i, starting with the second-

highest-ranking in the hierarchy, plan diversity (plDiv) between it and the cases 

chosen so far (Equation 9) is computed.  If plDiv is higher than a threshold  and 

similarity to the new problem is higher than a threshold ’, then c is added to the 

retrieved set. Otherwise, the iteration stops and the retrieved cases are returned.  

 

           

            
               

                                                                   (9) 
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In Equation 9, plSim is a plan-based measure of the similarity between two 

cases (such as Equation 23), c is the current state considered for retrieval, and R is 

the list of previously-retrieved cases. 

 

Algorithm 6: Plan Diversity through Threshold-based Selection 

Input: newProb - planning problem, CB - case base,  and ’ - threshold values, k 

– maximum number of retrieved cases.  

Output: R, the set of retrieved cases.  

plDiv is defined in Equation 9. 

stSim is a state-based similarity metric.  

PDTS(newProb, CB, , ’, k) 

1. CB’ ← cases in CB in decreasing order of their similarity to newProb 

2.  R ← {}, i ← 2 

3.  Add first case in CB’ to R  

4.  Repeat 

5.  c ← select case i from CB’ 

6.    If plDiv(c, R) >  and stSim(newProb, c) > ’  

7.       R ← R   {c} 

8.            i ←  i + 1 

9.   Until (plDiv(c, R) <=  or stSim(newProb, c) <= ’ or i  > k) 

10.   Return R 
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Note that if the similarity threshold is exceeded before k diverse cases have 

been identified, fewer than k cases will be returned. This does not occur in the 

evaluation domain. 

 

4.2.5 Plan/State-Diversity Greedy Selection (PDGS/SDGS) 

Unlike the SDSC and PDTS retrieval algorithms, the Greedy Selection algorithm 

(Smyth and McClave, 2001) is subsumed by the general diverse planning 

framework.  

 

Algorithm 7: Plan-Diversity/State-Diversity Greedy Selection 

Input: newProb - planning problem, CB - case base, k - number of cases in the 

retrieved set.  

Output: R, the set of retrieved cases.  

case is a case in the case base CB. 

simDiv is defined in Equation 10. 

PDGS and SDGS differ only based on the way in which simDiv is computed. 

PDGS/SDGS(newProb, CB, k) 

1. R ← {} 

2.    CB’ ← all cases in CB 

3.  For i ← 1 to k  

4.  Sort CB’ by simDiv(case, newProb, R)  
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5.     c  ←  top case in CB’ 

6.     R ← R   {c} 

7.      CB’ ← CB’   {c} 

8.  Return R 

 

Herein, Greedy Selection is used with both problem (state) diversity and 

solution (plan) diversity as retrieval criteria: the two variants of the algorithm will 

be referred to as State-Diversity Greedy Selection (SDGS) and Plan-Diversity 

Greedy Selection (PDGS), respectively.  

 PDGS/SDGS (Algorithm 7) retrieves a set of k diverse cases as follows: first, it 

adds to the retrieved set the case that is maximally similar to the new problem; 

then, for k-1 steps, it retrieves the case that maximizes the composite evaluation 

metric taking into account both the similarity to the new problem and the relative 

diversity with regard to the set of cases selected so far.   

The Greedy Selection retrieval criterion taking into account both similarity and 

diversity is defined in Equation 10. Equation 10 is an instantiation of Equation 1, 

where SolAdequacy is Sim. 

 

                                                     (10)                                                        
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In Equation 10, Sim is a case similarity measure used for traditional similarity-

based retrieval (state similarity), α is a parameter used for varying the 

complementary weights assigned to the similarity and diversity retrieval criteria, c 

is the candidate case considered for retrieval, R is the set of previously-retrieved 

cases, and RelDiv(c, R) is a measure of the relative diversity of a case c with regard 

to a set of cases R.  

In Equation 11, stSim is a state-based measure of the similarity between two 

cases (such as Equation 22), c is the current case considered for retrieval, and R is 

the set of previously-retrieved cases. 

For PDGS, RelDiv(c, R) = RelDiv(c.π, R.Π) (Equation 3), where c.π is the 

solution plan of case c, and R.Π is the set of solution plans in the set of cases R.  

For SDGS, RelDiv(c, R) = stDiv(c, R) (Equation 11). 

 

            
               

                                              (11) 
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4.3 DivCBP: Quantitative and Qualitative Diversity in Case-

Based Planning 

To demonstrate plan-diversity-aware case retrieval based on quantitative and 

qualitative distance metrics, I use Plan Diversity Greedy Selection (PDGS), a 

variant of the Greedy Selection algorithm proposed by Smyth and McClave (2001), 

as described in Chapter 4.2.5 above. This retrieval algorithm will be incorporated 

into the case-based planning algorithm DivCBP. Although the general DivCBP 

algorithm for diverse plan generation using case-based planning techniques is 

domain-independent, the particular implementation used in the evaluation section 

uses a domain-specific adaptation method tailored to the characteristics of the 

Wargus evaluation domain. The similarity metrics used for retrieval are also 

domain-specific, as are, of course, the demonstrated qualitative distance metrics. 

Again, the key difference between the original Greedy Selection algorithm 

(used for analysis tasks) and DivCBP retrieval (used for planning, which is a 

synthesis task) is that plan-diversity-aware retrieval takes the solution plan into 

account, in addition to the problem. During retrieval, the problem is considered for 

similarity purposes, while the solution is considered for diversity purposes. This 

criterion balancing problem similarity and plan dissimilarity is captured in 

Equation 12. 

The retrieval component of DivCBP is Algorithm 7, with simDiv = 

EvalCritDivCBP, as defined as in Equation 12. 
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DivCBP retrieval is subsumed by the general framework Algorithm 3. For 

DivCBP, Line 2 in Algorithm 3 corresponds to retrieving from the case base the 

case that is maximally similar to the new problem. Lines 4-7 correspond to the 

repeated retrieval, for k-1 steps, of the case that maximizes a combined evaluation 

metric taking into account both the similarity to the new problem and the relative 

diversity with regard to the set of cases retrieved so far.  

It follows that, for DivCBP, candidate solution adequacy is similarity to the 

new problem. Thus, the instantiation of Equation 1 can be written as follows: 

 

                                                       (12) 

 

 In Equation 12, c is the candidate case, n is the new problem, R is a set of 

previously retrieved cases, Sim is a case-similarity measure used for traditional 

similarity-based retrieval, c.π is the solution plan of case c, R.Π is the set of all 

solution plans in R, and RelDiv is defined as in Equation 3.   

 Retrieval of a diverse set of cases is followed by adaptation. Under the 

reasonable assumption that adaptation produces plans which are close to the source 

plan, the resulting set of plans can be reasonably expected to be diverse.  
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5   DivCBP vs. DivFF: A Comparative Analysis  

There exists a large body of work comparing plan adaptation and first-principles 

planning. A number of studies have shown the benefits of adaptation-based 

planning approaches (such as case-based planning) over planning from scratch. In 

addition to experimental studies demonstrating such benefits (Veloso, 1994; 

Gerevini and Serina, 2000; van der Krogt and de Weerdt, 2005), general 

frameworks have been developed to explain them (Au, Muñoz-Avila, and Nau, 

2002; Kuchibatla and Muñoz-Avila, 2006). 

  To this series of studies, I add a comparison of plan adaptation and first-

principles planning with regard to plan diversity, i.e. effectively generating multiple 

dissimilar solution plans for the same planning problem (Coman and Muñoz-Avila, 

2012a).  

DivFF and DivCBP have been introduced in previous chapters. DivCBP 

conducts diverse case-based planning, using a case base storing descriptions of 

previously-solved planning problems and their solution plans. DivFF conducts 

diverse heuristic-search planning, using domain descriptions based on state-

transition models.  

The two algorithms, therefore, differ in terms of the knowledge they require as 

input, and in the way planning is conducted. DivFF requires a complete state-

transition model, and the search is conducted in the set of all states that can be 
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constructed using this model. DivCBP uses the episodic knowledge provided by a 

case base, which can be incrementally updated; planning is conducted by following 

the case-based planning cycle. 

 Because DivFF uses complete domain information, it has the advantage of 

being able to generate any plan, which makes for higher potential plan diversity. A 

drawback is that the search space is exponential in the number of propositions in 

the domain description (based on the search-space complexity of FF, Hoffmann 

and Nebel, 2001). Therefore, actually finding diverse solutions may require 

considerable planning time. Planning effort may further increase when qualitative, 

rather than quantitative, distance metrics are used for diverse plan generation, as 

their requirements tend to be more difficult to satisfy.  

 Another issue potentially affecting the ability of DivFF to reliably generate 

diverse plans is the fact that, during planning, it assesses relative diversity based on 

an estimate of the final solution plan (as explained in the Chapter 4.1), as opposed 

to a completed plan.  

 The search space of DivCBP is limited to the contents of a case base. This may 

prove an impediment if the case base is not sufficiently diverse. More precisely, an 

ideal case base should include not only diverse plans, but diverse plans for diverse 

problems, so that whichever cases are preferred for problem-similarity purposes are 

also likely to include diverse plans. With such a case base, DivCBP should be able 

to reliably produce diverse plan sets. An important reason for this is that the 
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diversity assessment is based on plans in the case base, which are complete. Even 

with smaller case bases (which may include diverse plans only for certain 

problems), it may be possible to increase generated-plan diversity for DivCBP by 

lowering the α weight (Equation 12), so that more emphasis is given to the 

diversity criterion. 

If the retrieved cases are diverse and the adaptation criterion ensures that the 

adapted plans are similar to their source plans, the set of plans generated by 

DivCBP will be diverse.  

 Finally, while DivFF will often have a larger potential search space, it will not, 

in most cases, explore it exhaustively (at any step, it simply searches for the first 

state with a better heuristic evaluation than the previously-selected one, stopping as 

soon as such a state is found). By contrast, DivCBP will always explore its entire 

search space, which, in the worst case, corresponds to the entire case base. If a case 

with maximally dissimilar solution exists in the case base, it is more likely to be 

retrieved (although this is not guaranteed: it depends on whether the case satisfies 

the similarity criterion as well). It also follows that the number of candidate plans 

considered by DivCBP will always be the same, irrespective of whether the 

distance metric is quantitative or qualitative.  

 Figure 3 provides a comparative illustration of aspects of the DivCBP and 

DivFF planning processes for a problem in the Wargus domain. Consider problem 

pa, which specifies the number of friendly armies of each type (soldier armies, 
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peasant armies, etc.). Assume plan  a has already been generated, and the system 

is now generating a second, dissimilar plan, using distance metric D = DWargus 

(Equation 13), for computing relative diversity.  

 

              

  
                                           

                                                  
         (13)  

 

In Equation 13, attackUnitsType(π) is the type of units in the attacking army of 

plan π, and d is the degree of difference between two types of units, as defined in 

Table 1. 

 The search space of DivCBP (Figure 3(b)) is a case base.  

When using case base A (Figure 3), DivCBP retrieves case c2: even if soldiers 

are quite similar to peasants, this is the most dissimilar case available.  

When using case base B, case c4 is retrieved, as its plan is maximally 

dissimilar to  a, based on DWargus, while its problem is very similar to pa.  

It should be noted that, even if case c4 were not available, case c5 would be 

unlikely to be selected: even though it also uses mages to attack, its problem is not 

similar enough to problem pa.  
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Table 1. Domain-specific degrees of distance between types of Wargus units. 

 

 
Unit type 1 

 

 
Unit type 2 

 
d 

 
Peasant 
 

 
Soldier 

 
0.50 

 
Peasant 
 

 
Archer 

 
0.75 

 
Peasant 
 

 
Mage 

 
0.90 

 
Soldier 
 

 
Peasant 

 
0.50 

 
Soldier 
 

 
Archer 

 
0.50 

 
Soldier 
 

 
Mage 

 
0.75 

 
Archer 
 

 
Peasant 

 
0.75 

 
Archer 
 

 
Soldier 

 
0.50 

 
Archer 
 

 
Mage 

 
0.50 

 
Mage 
 

 
Peasant 

 
0.90 

 
Mage 
 

 
Soldier 

 
0.75 

 
Mage 
 

 
Archer 

 
0.50 

  

As a simplification, the search space of DivFF is represented in terms of the 

available actions in Figure 3(b). Strictly speaking, the search space contains all 
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possible states. Unlike states, which are only visited once, actions can be selected 

multiple times. 

The diversity of plans generated by DivFF will depend on the order in which 

actions are considered. If an attack action a1 using a peasant army is considered 

before an attack action a2 using a mage army, then the partial plan containing a1 

may be deemed sufficiently dissimilar to  a to be committed to, even if a2 would 

be the choice creating maximal diversity.  

Candidate solutions for DivCBP (Figure 3( c)) are completed plans. Candidate 

solutions for DivFF (Figure 3( d)) are made up of two parts: the first has been 

committed to, while the second is only an estimate, computed as explained in 

Chapter 4.1. Even though candidate plan  d might be accurately assessed as being 

dissimilar to  a, the finalized plan might be different from the estimate  d, and 

very similar to  a. 

 Based on these considerations, it is to be expected that DivCBP will generate 

less-diverse sets of plans than DivFF when its case base is small; and to outperform 

DivFF in terms of generated-plan-set diversity once the case base has been 

augmented sufficiently. 

 In terms of planning time, a significant bottleneck for DivFF is the 

preprocessing phase, which consists of parsing and grounding the planning 

problem.  
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Grounding consists of instantiating operators into all possible actions, by 

associating them with all combinations of actual parameters out of the available 

objects in the problem description (e.g. operator <attack(Soldier, Location)>, given 

the available Soldier objects sol1 and sol2, and the available Location objects loc1 

and loc2, will be instantiated into 4 actions: <attack(sol1,loc1)>, <attack(sol2,loc1), 

<attack(sol1,loc2)>, and <attack(sol2,loc2)>.  

Another time-consuming stage of the DivFF planning process is calculating the 

goal-distance heuristic value for each candidate state: this involves constructing a 

planning graph and extracting a solution from it.  

Also, while DivCBP assesses candidate plans already provided in a case base, 

DivFF needs to actually generate these candidate plans. In the case of DivCBP, I 

expect planning time to increase as the size of the case base increases.  

A comparative experimental evaluation of DivCBP and DivFF is conducted on 

the Wargus real-time-strategy-game planning domain (Chapter 8.4). The diversity 

of generated plans is assessed both by analyzing the plans themselves and by 

analyzing the variation of the results obtained when running the plans in the game.  

While certain behavior will be ascribable to characteristics particular to the 

compared systems, some conclusions can be extended to diverse plan generation 

systems using case-based planning and first-principles heuristic search planning 

techniques in general.  
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Figure 3. DivCBP and DivFF Comparison Example (the problem and plans are simplified: 

(pa) problem (units represent entire armies, e.g. 1 soldier = 1 army of soldiers), (πa) the 

plan that has already been generated, (b) example search spaces (simplified), (πc) and (πd) 
example candidate solution plans. 
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6 DivNDP: Policy Diversity in Nondeterministic 

Planning 

So far, it has been shown how the diverse solution generation framework can be 

applied to solving deterministic planning problems. In this chapter, it will be shown 

how the framework can be used for generating diverse sets of policies which solve 

nondeterministic planning problems.  

  Different policies for the same problem assign different actions to the same 

state, embodying varied strategies and approaches to a given task.  

  In the Robot Navigation planning domain (Cimatti et al., 2003), in which a 

robot must distribute objects in an office setting, different policies might prioritize 

objects differently, or avoid/prefer different rooms. While such information is not 

available to the planner, in the real environment represented by the planning 

domain, some rooms may be best avoided because they are too crowded, while 

particular objects may require fast delivery. 

  Diversity in nondeterministic planning, as approached herein, is different from 

the problem of generating the Pareto set of policies, optimizing several objectives 

(Bryce et al., 2007). Multiobjective optimization is appropriate in a probabilistic 

planning setting, where goals are expressed as objective functions, and the costs 

and rewards associated with transitions and states, as well as the probability of the 

actions’ outcomes, are known.  
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  Herein, I assume the availability of policy-differentiating criteria (distance 

metrics), but not that of solution optimization criteria (objective functions, 

transition cost and state reward information, or action-outcome probabilities) which 

would allow planning problems to be encoded and solved as optimization 

problems. Optimization problems are better addressed with a Pareto optimality 

approach (Bryce et al., 2007), producing multiple non-dominated solutions based 

on optimality, rather than diversity, criteria. Furthermore, it is often unrealistic or 

impractical to assume the availability of comprehensive optimization information 

(Ghallab, Nau and Traverso, 2004).  

  The availability of planning preferences is also not assumed. Nguyen et al. 

(2012) point out the importance of generating diverse solution sets in situations in 

which planning preferences may be assumed to exist, but are unknown to the 

planner, and more varied solution sets are more likely to include a satisfactory 

choice. This is similar to the motivation for diversity in case-based reasoning 

recommender systems (Smyth and McClave, 2001; Shimazu, 2001; McSherry, 

2002; McGinty and Smyth, 2003; Bridge and Kelly, 2006). 

  Figure 4 illustrates components of policies representing different strategies in 

the Nondeterministic Blocksworld domain of Kuter et al. (2008). In this version of 

the well-known planning test domain, the mechanical hand might fail to pick up a 

block.  
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Figure 4. Sample state-action pairs for two different policies in Nondeterministic 

Blocksworld 

 

  Two different strategies are (a) placing all stacked blocks on the table, then 

stacking them in the required order, and (b) moving only the blocks which are not 

yet in the required position. Figure 4 presents example state-action pairs (including 

possible outcomes) from policies based on these two strategies. The goal is for 

block C to be on top of block B, and block B to be on top of block A.    

  The first distance metric that will be used to demonstrate policy diversity is the 

quantitative distance metric DPS (“pair set” distance, Equation 14), a 

nondeterministic-planning variant of the DQuant (Equation 4) quantitative distance 

metric used previously. In deterministic planning, quantitative distance metric 

values increase with the number of actions which appear in strictly one of the two 

compared plans. In the case of policies, the differentiation generally needs to be 
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based on state-action pairs, not just actions, because two policies which contain 

the exact same actions mapped to different states can lead to very different 

behavior at runtime.  

 

       
   

             

        
                                             (14) 

   

  In Equation 14, π and π’ are policies, |π| is the number of state-action pairs in 

policy π, and (π \ π’) is the set of state-action pairs which are in π, but not in π’.  

   

6.1 Generating Diverse Policies with DivNDP 

DivNDP (Algorithm 8) is a diverse planning system which incorporates the NDP 

algorithm (Kuter et al., 2008) described in Chapter 2.4.1. It generates diverse sets 

of strong-cyclic solution policies to fully-observable nondeterministic planning 

problems, and can be used with any policy distance metric. 

  DivNDP generates k diverse policies as follows: it generates one policy using 

regular NDP and k-1 additional policies using a version of NDP that calls a version 

of PL with a modified heuristic function, hDiv (Equation 15), which balances 

between finding candidate partial policies that are more distant from previously-

generated policies and completing the partial policies quickly.   
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Algorithm 8: DivNDP - Diverse Nondeterministic Planning 

Input: Dom - a nondeterministic planning domain, S0 - the set of initial states of 

the nondeterministic planning problem, G - the set of goal states of the 

nondeterministic planning problem, PL - the heuristic planner, and k - the number 

of diverse policies to be generated. 

Output: Π, a set of diverse policies. 

PLDiv(Π) is a version of PL which uses the heuristic function hDiv (Equation 15). 

DivNDP(Dom, S0, G, PL, k)  

1.  Dom’ ← a deterministic relaxation of Dom 

2. Repeat  

3.     π ← ; S0 ← S0 \ G 

4.     If S0 = ; then Add π to Π 

5.     Else, Loop 

6.         If s in S0 s.t. ADom’(s) = ; then         

7.      Return FAILURE 

8.         S  ← {all non-goal leaf states in Σπ(S0)}  

9.         If S = ; then 

10.                   π ←  π \ {(s, a) ϵ π |s is not a π-descendant of S0}  

11.                   Add π to Π 

12.        Else, arbitrarily select a state s  S 

13.        Call PL/PLDiv(Π) on (Dom’, s, G) 
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 14.      If PL/PLDiv(Π) returns a solution plan p  

 15.                   π ←  π   {(s, a) | ai is an action in p, a  

is the non-deterministic action corresponding to ai, and s is 

the state in which ai is applied in p}  

 16.       Else //PL/PLDiv(Π) returns FAILURE 

 17.                BACKTRACK 

 18. Until |Π| = k policies have been generated or FAILURE 

 19. Return Π or signal FAILURE 

 

 

             hDiv = -αRelDiv(πp, Π) + (1-α)hPL                                        (15) 

 

  Equation 15 is a diverse nondeterministic planning heuristic, usable with any 

type of policy-distance metric. It is a variant of the general composite evaluation 

criterion (Equation 1). RelDiv is a measure of the relative diversity between a 

partial policy πp (Equation 16) and the set of previously-generated policies Π, hPL is 

the regular goal-distance heuristic of planner PL, while α is a parameter allowing 

adjustment of the weights assigned to policy diversity and goal distance, balancing 

diversity and performance requirements. The regular PL heuristic hPL must be 

minimized, while the diversity RelDiv must be maximized, hence the 

corresponding signs (assuming PL seeks to minimize heuristic values). 
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                                                                                             (16) 

  

  In Equation 16, pi are the complete plans generated in previous runs of PL, pp 

is the current partial plan as computed by PL, while P(p) is the set of state-action 

pairs (s, a), where a is the nondeterministic action corresponding to deterministic 

action ai in p, and s is a state in which ai is applied in p.  

  I also introduce Equation 16’, a simplified version of Equation 16, which 

allows diversity to be computed based only on the current partial plan pp, instead of 

the entire partial policy πp. This helps avoid redundant work when using a relative 

distance metric for which hDiv = hDiv’, such as DPS (Equation 14).  

  In Equation 16’, RelDiv’ is the relative diversity between a partial plan pp and a 

set of policies Π (Equation 17).  

  In Equation 17, pp is a partial plan, Π is a set of policies, |Π| is the number of 

policies in Π, π is one such policy, and RelD is a distance metric, such RelDPS 

(Equation 18),  indicating the degree of difference between a plan p and a policy π.  

  In Equation 18, length(p) is the number of actions in p, and P(p) is a collection 

of state-action pairs as defined for Equation 16.  

 

                hDiv’ = -αRelDiv’(pp, Π) + (1-α)hPL                                   (16’) 
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                                                      (17) 

   

                                    
        

         
                                         (18) 

  

  For the purpose of the comparison between partial plan pp and policy π, only 

state-action pairs (s, a) which appear in P(pp) are taken into consideration, in order 

to avoid shorter partial plans being evaluated as more dissimilar to π. Furthermore, 

pairs which do not appear in P(pp) but appear in π are less relevant for the distance 

computation, as state-action pairs may be added to P(pp) later on in the planning 

process, while the policies are already complete. In preliminary experiments, taking 

into account all state-action pairs in π, irrespective of whether they appear in P(pp), 

led to a significant decrease in the diversity of the generated policy sets. 

  The state-action pairs in P(pp) contain the original nondeterministic actions, 

not their deterministic versions in pp: any two deterministic actions ai and ak 

originating from the same nondeterministic action a are considered identical for the 

purpose of the comparison between pp and π. 
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6.2 Search Space Limitations and Diversity 

As previously explained, heuristic-search planners increase search efficiency by 

reducing the search space through filters and heuristic-based candidate-solution 

selection. As shown in Chapter 4.1, the FF planner (Hoffmann and Nebel, 2001) 

evaluates candidate states heuristically using, as goal distance, the length of a 

solution plan to a relaxed problem obtained by ignoring negative effects of actions. 

When its primary search type, Enforced Hill-Climbing (EHC), which is efficient, 

but not complete, fails to find a solution, FF switches to complete Best-First 

Search, guided by the same heuristic. A filter called Helpful Actions is used to filter 

out the less promising candidate states. 

  However, the use of such filters and heuristic-based limitations can severely 

limit opportunities for creating diversity, in deterministic and nondeterministic 

planning alike. In Chapter 5, this has been pointed out as a weakness of DivFF, a 

diverse heuristic planner based on FF. In the experimental evaluation (Chapter 8.4), 

the diverse heuristic planner was rarely able to produce maximally diverse plan 

sets. This occurs because EHC never considers certain candidate states, eliminating 

opportunities for diversity. For the majority of the DivNDP experiments, having 

noted that this weakness severely impedes diversity, it has been eliminated by not 

using FF filters and EHC search, and relying solely on complete Best-First Search, 

which is also guided by a heuristic metric for ordering the candidate states, but 

which eventually considers the entire search space if necessary.  
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7 Game Character Diversity: An Application of 

Diverse Solution Generation in Planning 

Having described algorithms for generating diverse solutions in deterministic and 

nondeterministic planning, I now show how these techniques can be used to 

enhance the diversity of non-player characters in computer games.  

 Character diversity can be attained by modeling game characters in terms of 

personalities, morals, emotional states, and social affinities. Such character 

modeling has been explored extensively (Cavazza, Charles, and Mead, 2002; 

Cavazza and Charles, 2005; Strong et al., 2007; McCoy et al., 2010; Cavazza et al., 

2009; Thue et al., 2010).  

 An alternative method for creating diverse characters (Coman and Muñoz-

Avila, 2012b) is based on behavior diversity, where character behavior is 

represented as plans or policies, and plan/policy diversity is created using the 

diverse planning algorithms described previously (DivCBP and DivNDP will be 

used for this purpose in the experimental evaluation in Chapter 8). In game 

scenarios, it will be shown how this approach creates varied character behavior 

reflecting different personality traits. This is a bottom-up approach to attaining 

character diversity: while character modeling endows characters with traits which 

determine their behavior (a top-down approach), plan diversity creates diversity in 
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terms of behavior and, as different types of behavior reflect different personality 

traits, this simulates personality variation.  

 To sum up, a character’s behavior, represented as plans, reflects the character’s 

personality traits, hence plan diversity can be the basis of character diversity.  

 

7.1 Example Scenario 

I exemplify this approach to creating character diversity in a Wargus scenario. In 

real-time strategy games like Wargus, characters are typically endowed with 

abilities such as attack strength, technical skill, endurance, etc., but they do not 

have individual personalities modeled in terms of temperament, morals, etc. With 

plan diversity, one can, to some extent, simulate character personality variety, 

which is a crucial component of many game genres, including role-playing games 

(RPGs). 

Assume, hence, that the aim is to generate plans to be acted out by characters 

in an RPG game scenario, simulated through Wargus.  

In terms of unit category, each character can be a peasant, soldier, archer or 

mage (unit category determines abilities, but not personality and actual behavior).  

The map (Figure 5) contains buildings and units belonging to a friendly side 

and to an enemy side as well as neutral ones, including: a treasure, an enemy town 

hall, an abandoned guard tower, and a friendly peasant who is trapped in an 

enclosed space protected by a strong enemy paladin. With regard to his/her attitude 
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towards collecting the treasure, a character can be greedy or not greedy; with regard 

to his/her attitude toward the friend in need, the character can be helpful or 

indifferent. Furthermore, a helpful character can behave in a reckless or an 

intelligent manner in approaching their friend’s rescue.  

 

Figure 5. Example Scenario. Our character is highlighted. Other map elements of interest 

are: (1) friend in need, (2) old guard tower, (3) trees blocking the escape path, (4) ruthless 
enemy paladin, (5) treasure, (6) friendly town hall, (7) enemy town hall. 

 

 

 A character is greedy if s/he collects the treasure or loots the poorly-guarded 

enemy town hall (of course, the designation of this behavior as “greedy” is a choice 

which can change from story to story: one might instead choose to consider 

collecting the treasure as indicative of diligence or good citizenship); helpful if s/he 

attempts to save the captive friend. A helpful character might be considered 



www.manaraa.com

107 
 
 

 

reckless if s/he attacks the unbeatable enemy paladin, and intelligent if s/he frees 

the friend by either cutting down trees or demolishing the old guard tower to make 

a path for the friend to escape by. Any other actions carried out in the plan are 

considered irrelevant for the purposes of this classification (e.g. it does not matter if 

the character takes a shortcut or the long way to the treasure). Greed, bravery and 

intelligence are, therefore, the traits along which variation will be created. A player 

exploring the game world populated by such character types would now encounter 

non-player characters (NPCs) which, while being part of the same unit category 

(e.g. peasants), exhibit varied behavior simulating personality differences. 

 

       π π   

  
              π           π  

                    π           π  
                 (19) 

 

To generate diverse plans for this example scenario, assume the distance 

metric in Equation 19 is used: π and π’ are plans, and CharType(π) is the type of 

character (not to be confused with the unit category: unit categories are archer, 

soldier, etc.) reflected in plan π, while d is a degree of distance between possible 

character types. The six character types used for exemplification are: (1) greedy 

and indifferent, (2) greedy and intelligent, (3) greedy and reckless, (4) not greedy 
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and indifferent, (5) not greedy and intelligent, (6) not greedy and reckless. Equation 

19 is extensible to include additional character types.  

Assume that the diverse case-based planner DivCBP (Chapter 4.2) is used to 

produce sets of plans which are diverse based on this distance metric. The problem 

description consists simply of the unit category that the character belongs to (this 

information is included in the initial state), with the 4 options being: peasant, 

soldier, archer, and mage. 

Assume that all 4 unit categories are represented in the case base. In addition to 

the problem description specifying a unit category, each case contains a plan that 

the unit is able to execute (e.g. for a peasant unit, the plan might specify moving to 

a certain location on the map and cutting down trees, then moving to another 

location and collecting a treasure). There are differences between units in terms of 

the ways in which they are able to manifest certain character traits (e.g. since no 

units but the peasants are able to harvest treasure, soldiers, archers and mages 

manifest their greed by attacking the enemy town hall).  

Assume that the aim is to generate 3 diverse behavior plans for a peasant unit 

(Figure 6) and that we are using DivCBP with unit type as the similarity component 

of the retrieval criterion.  

First, a case is selected from the case base using solely the similarity criterion, 

i.e. the new problem description should match the case problem description, 

therefore the acting unit in the case should be a peasant.  
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     Figure 6. Potential plans that a character can execute 

 

Out of the retrieved peasant cases, case c1 is picked randomly, and ties are 

broken by random selection. Assume that c1.π, the plan of the randomly picked 

case, specifies that the character should collect the nearby treasure, then attack the 

enemy paladin, in an attempt to save their friend (the plan shown by the thin 

arrows in Figure 6). According to the description, this plan reflects greedy and 

reckless behavior.  

Case c2 is now selected based on the composite criterion combining problem 

similarity and plan diversity with respect to c1.π. Based on the definition of d in 

Equation 19, the selected plan, c2.π, is a not greedy and indifferent character’s plan: 

the peasant spends his/her time roaming the countryside, attacking irrelevant map 

locations or visiting the town hall, ignoring both the friend’s predicament and the 

tempting treasure (see dashed arrows in Figure 6).  
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Finally, case c3, another peasant case, is selected. Its plan should be as 

dissimilar as possible from both c1.π and c2.π. Again, any ties are broken by 

random selection. The selected plan could be a not greedy and intelligent one, or a 

greedy and intelligent one (see thick arrows in Figure 6 for the latter).  

There is now a set of three retrieved plans reflecting meaningfully different 

character behavior.  

Of course, such a successful selection is conditioned by the availability of 

plans corresponding to all these character types in the case base, and by the 

adequacy of the plan-distance criterion when it comes to capturing meaningful 

behavior-related differences between plans.  

In an actual game-play session, on an extended map, the three plans above 

might be acted out by three peasant characters with different personalities.    
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8  Experimental Evaluation 

This chapter is dedicated to the experimental evaluation of the previously-described 

systems for diverse solution generation. DivFF is evaluated in Chapter 8.1, while 

DivCBP and other diversity-aware case-based planning systems are evaluated in 

Chapters 8.2 and 8.3. Chapter 8.4 is dedicated to the comparative evaluation of 

DivCBP and DivFF, and Chapter 8.5 to the use of solutions generated by DivCBP 

to create diverse computer game characters. DivNDP is evaluated in Chapter 8.6 

(this evaluation also includes game-character diversity). 

 

8.1 DivFF 

DivFF uses the JavaFF (Coles et al., 2008) implementation of FF.  

  It is tested on 4 domains: the first 3 are synthetic, while the fourth is the 

Wargus real-time strategy game domain.  

  Two types of distance metrics are used to compute RelDiv (Equation 3). For 

the synthetic domains, a quantitative distance metric is used. For the Wargus 

domain, both a quantitative and a qualitative distance metric are used (the 

abbreviations Quant and Qual are used to distinguish between DivFF variants using 

these metrics). 

  As a baseline, I use ε-Greedy FF, a slightly modified version of JavaFF which 

generates sets of k plans by occasionally injecting random diversity into the 
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planning process: whenever choosing between candidate states, ε-Greedy FF will, 

with probability (1-ε), pick a candidate state randomly. In all other cases, it will 

behave as JavaFF would (pick the state with the best heuristic value). 

 

8.1.1 Experimental Setup 

Planning Domains. The 3 synthetic test domains used are DriverLog, Depots, and 

Rovers. For creating diversity in these domains, a variant of the quantitative plan 

distance metric DQuant (Equation 4) is used. 

 The fourth domain is Wargus, which exhibits many of the characteristics of 

real domains of practical interest, and is used herein to highlight the value of 

qualitative plan diversity for such domains. It should be stressed that the aim is not 

to produce plans demonstrating expert-gamer behavior, but to create game sessions 

that are diverse, providing a varied sample of approaches to the game. This can, for 

example, be of practical value in the modeling of AI enemies, which, to make the 

game environment realistic and engaging, should vary in intelligence and ability.  

The games take place on a small-size map (32x32 tiles). By restricting the size 

of the map and the types of units used, considerable intrinsic game variation is 

purposely not allowed.  

Plans for the Wargus domain indicate what units in a team should do when 

competing against the built-in Wargus enemy AI. Units can move from a current 

location to an indicated one, attack any enemies at an indicated location on the 
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map, or guard a location (attacking any enemy that comes within a certain range). 

A restriction specified in the domain description is that no two units can be 

occupying the same map location at the same time.  

The Wargus problems that the evaluation is conducted on correspond to game 

scenarios that are significantly different from one another. Problem descriptions 

indicate the available friendly unit armies and several map locations representing 

waypoints to which the units can move, a subset of which are “attackable” (they 

can be the target of an “attack” action).  

 

               

 
                                        

                                        
                         (20) 

   

  Diverse Wargus plans are generated using on a qualitative distance metric, 

DWargus’ (Equation 20), which reflects domain knowledge: a relevant characteristic 

setting plans apart is the type of units used for attacking, as different units have 

their specific strengths and weaknesses (e.g. an archer is adept at long range 

attacks, but weak in close combat), and their losses lead to different score penalties.  

  In Equation 20, attackUnitsType(π) is the type of units in the attacking army of 

plan π.  
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  For the Wargus domain, the Helpful Actions filter used by JavaFF is 

suppressed (thus eliminating preliminary action pruning), for both DivFF and ε-

Greedy FF. The Helpful Actions filter only considers a limited subset of the 

applicable actions, potentially making it impossible to obtain qualitatively diverse 

plans, if the actions required for doing so are not in the subset in question. In 

Equation 8, the assigned weight is α = 0.8 (thus giving more weight to the FF 

heuristic) for the synthetic domains, in order to increase the chances of generating a 

solution, as it was found empirically that, with lower values of α, DivFF generates 

solutions for fewer problems. For the Wargus domain, the assigned weight is α = 

0.55, which is sufficient to generate solutions for all problems, and ensure that 

these solutions are diverse.  

 

8.1.2 Evaluation Methods 

For the synthetic domains, the diversity of the plan sets generated with DivFF and 

ε-Greedy FF (ε = 0,99; 0,8; 0,7) is evaluated using the diversity metric Div 

(Equation 2) with the quantitative distance metric used for diverse plan generation.  

 In the Wargus domain, the diversity of the generated plans is tested by running 

them in the game and observing the variation of the built-in Wargus score (which 

reflects damage inflicted and incurred).  DivFF Qual (D = DWargus’) is compared 

with ε-Greedy FF and with DivFF Quant (D =  DQuant).  
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 In order to assess ε-Greedy FF and DivFF
 
on equal terms, out of the problems 

in each domain, results are only reported for the problems on which both planner 

variants were able to produce complete sets of plans and did so using only 

Enforced Hill Climbing (not switching to complete search), as the use of a different 

algorithm may, by itself, influence plan diversity (e.g. if two plans in a set are 

generated using different algorithms, they are more likely to differ), potentially 

creating bias in favor of one or the other of the compared algorithms.  

 

8.1.3 Experimental Results 

For all three synthetic domains, the diversity of the plan sets generated using DivFF 

is, in most instances, greater than that of plan sets generated using the three ε-

Greedy FF variants, while plan generation time is comparable, as can be seen in 

Figure 7: each point indicates the average of the diversity or planning time (as 

indicated by the y-axis label) over 4 planning sessions (with k=4) on one domain 

problem.  

  It should be noted that, as ε decreases, ε-Greedy FF produces increasingly 

greater diversity (because more random choices are being made), but the number of 

failed planning attempts also increases. This causes 0.7-Greedy FF to repeatedly 

fail on the last two problems in the DriverLog domain, never producing results 

(hence, the two missing data points in the DriverLog section of Figure 7). 

Increasing diversity by greatly increasing ε is, therefore, not a feasible approach. 
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In-game results for the Wargus domain (Figure 8) indicate that DivFF Qual 

generates sets of plans containing, on average, more distinct values than both 

DivFF Quant and 0.7-Greedy FF. 

In Figure 8, each point indicates the average game score for 4 game runs of the 

same plan (the fluctuation of the score is shown in the error bars).  

For Problem 1, DivFF
 
Qual produces 3 out of 4 distinct scores on the first and 

third plan sets, and 4 distinct scores on the second one, while DivFF Quant 

produces 2 out of 4 distinct scores on the first two sets and 3 out 4 distinct scores 

on the third set. For Problem 2, DivFF Qual produces 3 out of 4 distinct scores on 

the first two plan sets and 2 out of 4 distinct scores on the last set, while DivFF 

Quant produces 2 out of 4 distinct scores on all three sets. For Problem 3, DivFF 

Qual produces three maximally diverse sets of scores (4 distinct scores per plan 

set), while DivFF Quant produces 2 out of 4 distinct scores on the first set, 4 out of 

4 distinct scores on the second set and 3 out of 4 distinct scores on the third set. For 

Problems 4 and 5, DivFF Qual produces 3 out of 4 distinct scores on all plan sets, 

while DivFF Quant produces 2 out of 4 distinct scores on all plan sets.  
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Figure 7. Synthetic domains: diversity (left) and planning time (right) 

 

 

 

 

Figure 8. Wargus domain: game scores for each planning problem 
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  0.7-Greedy FF only produces 2 out of 4 distinct scores on the third plan set in 

Problem 3 and the third plan set in Problem 4, achieving no score diversity at all in 

any other plan set.  

  In addition to showing that both variants of DivFF outperform a randomized 

diverse-plan generation method, the results suggest that the qualitative distance 

metric can, indeed, help generate plan sets of greater genuine diversity, as attested 

by their behavior in Wargus.  

  It should also pointed out that, for each problem, a subset of DivFF Qual plans 

perform at least as well as any plans generated with DivFF Quant or 0.7-Greedy FF 

(as reflected in game scores).  

  Furthermore, it has been observed that DivFF Quant tends to produce plans of 

questionable quality, by inflating them with actions not necessary for reaching the 

goal state, added solely for the purpose of increasing the distance to the previously-

generated set of plans. In contrast, DivFF Qual generally restricts itself to adding 

actions which are necessary for reaching the goal state. This is reflected in the 

lower average length of DivFF Qual plans, and suggests that a well-chosen 

qualitative plan distance metric may help ensure that the generated diverse plans 

are also of good quality. 
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8.2 State Diversity vs. Plan Diversity in Case-based Planning 

8.2.1 Experimental Setup 

Experiments are conducted in the Wargus domain, on a 32x32 tile map.  Two types 

of units are used: soldiers and peasants. The layout of the terrain and lack of 

building units ensure the brevity of game-play episodes, making them easily 

comparable to each other. 

State similarity is based only on the initial state configuration (describing the 

friendly units) because plans are not annotated with their goals (e.g., capture the 

center of the map). This simulates a situation in which successful plans are 

captured by observing a player's actions, without knowing the player’s intention. 

An initial state is defined by a pair of type (numSold, numPeas), where numSold is 

the number of soldier units and numPeas the number of peasant units in the initial 

state that will be controlled through the generated plans.  

Equation 21 is stSim, the state similarity metric used by the SDGS and PDGS 

algorithms. 

 

             

                      

                      
     

                       

                      

 
      (21) 
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In Equation 21, c1 and c2 are case-base cases, numSoldi is the number of 

soldier units in case i, and numPeasi is the number of peasant units in case i. 

The plans can include the actions attackMove (moving to a specified location 

on the map while attacking any enemy units encountered on the way), patrol, move, 

and attack (as described in Chapter 3.3). At this stage, no coordinates associated 

with these moves are taken into account when computing plan similarity. Groups of 

units will, as a rule, move in the same direction, both in the case-base plans and in 

the adapted ones.  

Plan similarity plSim between two plans is defined as in Equation 22. 

 

 

               

   

                          
                          

      
                                  
                                   

 
 

    

                          
                          

      
                      
                      

 
       (22)  

 

 

In Equation 22, c1 and c2 are case-base cases, and num[Action]i is the number 

of actions of type [Action] in case i. 

The new problem is defined by its initial state, a (numSold, numPeas) pair. The 

new problem used for experimental evaluation has the initial state (10, 9): 10 

soldiers and 9 peasants (Figure 9). 
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Although the following information is not stored in the case base, 

conceptually, there are 4 plan strategies:  

(1) Offensive (all units attack) 

(2) Defensive (all soldier units patrol, all peasant units stay put) 

(3) Balanced Offensive (75% of soldiers attack, 25% patrol) 

(4) Balanced Defensive (50% of soldiers attack, 50% patrol).  

The case base contains 16 cases (Table 2), with solution plans consisting of all 

possible state-strategy combinations between 4 start states (with varying numbers 

of peasant and soldier units) and a number of plans 

. 

 
 

Figure 9. Initial configurations of a case and a new problem 

 

 

Table 2 shows only a summarization of the plans; the following is an example 

of an actual plan, as stored in the case base: 
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m_pb.attackMove(1,13,10); 

 m_pb.move(2, 7, 8); 

 m_pb.patrol(2, 9, 7); 

 m_pb.move(13, 5, 9); 

 m_pb.patrol(13, 6, 10); 

 

The plan above instructs unit 1 to move to coordinates (13,10) on the map, 

while attacking any enemy unit encountered on the way; and units 2 and 13 to 

move to coordinates (7,8) and (5,9), respectively, and to start patrolling back and 

forth between their new location and coordinates (9,7) and (6,10), respectively. 

Adaptation is performed by building a plan based on the same strategy as the 

retrieved plan, but adjusted to the number of units in the new-problem initial state. 

For example, if the retrieved plan is Case 2 in Table 2, a defensive plan, the 

adapted plan for the new problem will have all 10 soldier units move to a key 

location and patrol, while all 9 peasant units remain where they are.  

 Each of the four retrieval algorithms (State Diversity through Similarity 

Clusters - SDSC, Plan Diversity through Threshold-based Selection - PDTS, State 

Diversity Greedy Selection - SDGS, and Plan Diversity Greedy Selection - PDGS) 

is run on the new problem 4 times (with tie-breaking handled by random selection), 

each time recording the top 4 retrieved plans (k=4).  



www.manaraa.com

123 
 
 

 

For PDTS, the thresholds are   = 0.3 and ’ = 0.5. For PDGS and SDGS, α is 

set at 0.5. 

 

Table 2. Summarizations of the initial states and plans in the case-base cases 

 

 

CASES 

 

 Initial state  Plan summarization 

  1. 8 s, 3 p AttackMove x 11 

  2. 8 s, 3 p Move x 8, Patrol x 8 

  3. 8 s, 3 p AttackMove x 6, Move x 2, Patrol x 2 

  4. 8 s, 3 p AttackMove x 4, Move x 4, Patrol x 4 

  5. 3 s, 2 p AttackMove x 5 

  6. 3 s, 2 p Move x 3, Patrol x 3 

  7. 3 s, 2 p AttackMove x 2, Move x 1, Patrol x 1 

  8. 3 s, 2 p AttackMove x 1, Move x 2, Patrol x 2 

  9. 4 s, 0 p AttackMove x 4 

10. 4 s, 0 p Move x 4, Patrol x 4 

11. 4 s, 0 p AttackMove x 3, Move x 1, Patrol x 1 

12. 4 s, 0 p AttackMove x 2, Move x 2, Patrol x 2 

13. 5 s, 5 p AttackMove x 10 

14. 5 s, 5 p Move x 5, Patrol x 5 

15. 5 s, 5 p AttackMove x 3, Move x 2, Patrol x 2 

16. 5 s, 5 p AttackMove x 2, Move x 3, Patrol x 3 

 

 

 Retrieved plans are adapted to the new problem, and the resulting sets of plans 

are run in the game. At the end of each such game (after all enemy units have been 

destroyed), the values of two evaluation metrics are recorded: game duration in 

number of game cycles (as recorded by Wargus) and score (consisting of the 
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difference between the player’s score and the opponent’s score, as computed by 

Wargus and explained in Chapter 3.3). 

The hypothesis is that plan-diverse cases will produce greater game variation 

than state-diverse cases. On adapting plan-diverse retrieved cases and running them 

in the game, it is expected that the results (measured through game-specific 

metrics) will be quantifiably more varied than those obtained using plans retrieved 

through state-diversity methods. 

 

8.2.2 Experimental Results 

The results are shown in Figure 11 (each point in each of the graphs represents 

results averaged over 4 games).  

 

 
 

Figure 10. A second map, topologically-different from that in Figure 9 (two   

gaps in the forest between the camps) 
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Incorporating the plan diversity criterion into the retrieval process leads to the 

selection of plans which, after being adapted and run in the game environment, 

generate visibly varied results (both for score and for game cycles).  

The variation in results for state-diverse plans is negligible by comparison, and 

largely due to the random factor introduced by the tie-breaking mechanism as well 

as to the nondeterministic nature of the game (even when running several games 

with identical initial configuration and strategies, there will be some variation in 

game duration and final score). Diversity based on these factors is not as valuable, 

as its consistency cannot be guaranteed over multiple runs. 

Both tested plan-diversity-aware algorithms, PDTS and PDGS, always retrieve 

sets of plans containing all four types of strategies, whereas, with state diversity, 

the retrieval of a highly diverse set is unlikely. In SDSC test runs, at least two 

results from the state-diverse retrieval set are always instances of the same strategy. 

Each of the methods based on plan diversity produces in-game results within a 

larger range than its state-diversity counterpart: the highest and the lowest values, 

in terms of score as well as game duration, were obtained by running plans 

retrieved with plan-diversity-aware methods.  

For plans based on those retrieved with the PDTS retrieval algorithm, the 

standard deviation is 211.5 for number of game cycles and 84.3 for score (compare 

with 29.9 for number of game cycles and 7.2 for score in the case of SDSC plans).  
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Figure 11. (a) State-Diversity by Similarity Clusters vs. Plan-Diversity by Threshold-

based Selection (b) State-Diversity Greedy Selection vs. Plan-Diversity Greedy Selection 

 

In the case of PDGS plans, the standard deviation is approximately twice as 

large as for SDGS plans (271.4 for number of game cycles and 105.9 for score, 

compared to 142.9 for number of game cycles and 50.8 for score). 
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Similar results were obtained on an alternative map (Figure 10) that is 

topologically different from the first one, in that there are two gaps in the forest 

initially separating the two opponent camps, offering more passage possibilities for 

the enemy army.  

 

8.3 DivCBP 

8.3.1 Experimental Setup 

Two-player Wargus games are run on two 32x32 tile maps (Figure 12). Compared 

to Chapter 8.2, the game configurations are more sophisticated (more unit types 

and more complex plans), as is the case-based planning system.   

The types of units and available actions are as described in Chapter 3.3.  

Each plan represents an individual battle (in which one of the armies 

challenges the enemy), rather than a complete, prolonged game. This restriction 

was necessary so as not to allow excessive implicit game-play diversity, which 

might render meaningless the difference in variance between results produced using 

different metrics.  

Again, the two maps on which the generated plans are tested are topologically 

different: the first has one gap in the forest separating the two armies, while the 

second has two gaps, located at different coordinates than the gap in the first map. 

This difference is meaningful: on the second map, units will sometimes make 

different choices as to which gap to use to pass to the other side: sometimes, all 
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units will use the same gap, at other times, they will split up, sometimes they will 

even “hesitate”, marching towards one gap, then returning to the other one. This 

ensures considerably different game behavior between the two maps.  

 

Case-based Planning System. In the case-based planning system, the following 

convention is used: the cases are interpreted as battle-plan blueprints, so that every 

unit in a case is an abstracted representation of an entire army of units of that type 

(e.g. a soldier stands for an army of soldiers). New problems consist of actual game 

configurations, specifying number of armies of each type, as well as number of 

units in each army. 

 

 
 

Figure 12. The two topologically-different game maps, with archer armies highlighted. 

Note how the archer army in the second map has split up into two divisions, each using a 
different gap to pass. 
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Figure 13. Sample case, new problem, and the corresponding adapted plan (units in the 
adapted plan are not annotated with the army they belong to because, in this example, there 

is only one army of each type). The second action parameter indicates the coordinates of 

the location at which the action should take place. 

 

NEW PROBLEM 

 

Initial State 

1 soldier army  

(4 units) 

1 peasant army  
(4 units) 

2 mage armies  

(4 units each) 

2 archer armies  

(4 units each) 

RETRIEVED CASE 

 

Initial State 

1 soldier army 

1 peasant army 

1 mage army  

1 archer army  

 

Plan 

move (archer1, 05_05)  

move (peasant1, 03_02)  

move (mage1, 04_07)  

move (archer1, 24_07)  

patrol (soldier1, 01_04)  

move (soldier1, 05_04)  

attack (archer1, 24_07)  

ADAPTED PLAN 

move (archer1, 05_05)  

move (archer2, 05_05)  

move (archer3, 05_05)  

move (archer4, 05_05)  

  move (peasant1, 03_02)  

  move (peasant2, 03_02)  

  move (peasant3, 03_02)  

  move (peasant4, 03_02)  

move (mage1, 04_07)  

move (mage2, 04_07)  

move (mage3, 04_07)  

move (mage4, 04_07)  

  move (archer1, 24_07)  

  move (archer2, 24_07)  

  move (archer3, 24_07)  

  move (archer4, 24_07)  

patrol (soldier1, 01_04)  

patrol (soldier2, 01_04)  

patrol (soldier3, 01_04)  

patrol (soldier4, 01_04)  

  move (soldier1, 05_04)    

  move (soldier2, 05_04)  

  move (soldier3, 05_04)  

  move (soldier4, 05_04)  

attack (archer1, 24_07)  

attack (archer2, 24_07)  

attack (archer3, 24_07)  

attack (archer4, 24_07)  
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The case base consists of 100 distinct cases, each composed of an initial state 

(the problem) and a plan (the solution).  

The initial state is represented in terms of numbers of armies of each type. 

Each of these armies is represented by one unit in the plan. 

The case solution plans were generated using the FF generative planner 

(Hoffmann and Nebel, 2001), modified so as to generate multiple plans for the 

same problem. All case-base plans contain an attack action carried out by one unit 

(which represents the entire attacking army in the adapted plan). No goal state is 

specified: the general goal is to obtain the highest possible score, and there is never 

one single final state through which this is achieved. 

The new problems consist of initial game states, indicating the number of 

armies of each type (soldier, archer, mage, peasant) as well as the number of units 

in each of the armies. All units in an army are of the same type. There are 5 new 

problems, with varying numbers of armies of each type, as well as number of units 

per army. 

The adaptation algorithm is consistent with the idea of a retrieved plan 

serving as blueprint. As each unit in the retrieved plan represents an army, each 

army A in the new problem will be matched to a unit U (of the same type as the 

units in A) in the retrieved plan. All units in A will then perform all actions 

performed by U in the retrieved plan. The matching will occur in order of the 

numbering of units in the retrieved plan, with one exception: if unit U is the 
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attacking unit in the retrieved plan, U will be the first to be assigned to an army of 

its type in the new problem, assuming such an army exists. This will always be the 

case with the problems used for testing: they all contain at least one army of each 

type, in order to be able to take at least partial advantage of any retrieved plan. An 

adaptation example is provided in Figure 13. 

For case retrieval, the PDGS retrieval algorithm (Algorithm 7) is used, where 

k = 4, α = 0.5, and Sim is a similarity metric SimInitSt (Equation 23) based on the 

initial states of the compared cases. 

 

                       

 
   

                                                 

                                                 
 
   

 
          (23) 

 

In Equation 23, n is the number of types of units (in the experimental setup, n 

= 4) and numArmiesTypei(c.IS) is the number of armies of units of type i  in the 

initial state of case c. 

As the distance metric D, the quantitative metric DQuant (Equation 4) and the 

game-specific qualitative metric DWargus (Equation 13) are used. 
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8.3.2 Evaluation Methods 

To evaluate the diversity of game-play sessions based on the sets of generated 

plans, the variation of two game-specific evaluation metrics is observed.  

The primary metric is Wargus score (computed as described in Chapter 3.3), 

while the secondary metric is time (the duration, in game cycles, of game-play 

sessions). 

The hypothesis is that plans obtained using retrieval based on the qualitative 

plan-diversity metric DWargus will produce greater game-play variation (reflected in 

the evaluation metrics) than plans obtained using the action-set quantitative 

distance metric DQuant. It is to be expected that, when run in the game, adaptations 

of plans retrieved using the qualitative distance metric will produce significantly 

more variation (as measured using standard deviation and assessed using the F-test) 

of Wargus scores than adaptations of quantitatively-diverse sets of plans. Similar 

results are expected with regard to time, but with less confidence, as it has been 

observed that game duration tends to vary more between runs of the same plan, on 

the same map.  

Note how, out of the countless possible domain-specific, qualitative distance 

metrics, one was chosen in accordance with the purpose of obtaining easily 

quantifiable diversity. Had the objective been different, one might have opted for a 

distance metric producing some form of diverse game behavior which is not so 

clearly reflected in score variation. For example, had time been chosen as the 
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primary metric, one might have retrieved plans which use diverse route waypoints, 

encouraging the variation of game duration more clearly than the variation of score. 

The question might be raised whether plan sets producing highly diverse 

scores, from high to low (rather than all of the plans playing the game expertly) are 

ever of practical value. A simple example of a situation when such plans are 

valuable is the modeling of AI enemies, which, to make the game environment 

realistic (as well as not discouragingly difficult) should vary in intelligence and 

ability. Also, in partially unknown environments (e.g. the enemy force may vary 

over consecutive plans), we may benefit from experimenting with multiple diverse 

plans, even if some of them behaved poorly in a slightly different game 

configuration. 

 

8.3.3 Experimental Results 

In Figure 14, each point in each chart represents the standard deviation of score or 

time (as indicated) for one plan set of 4 plans, where each plan is run in the game 5 

times. The two data sets in each chart correspond to results obtained using the 

quantitative distance metric DQuant and the qualitative metric DWargus, respectively. 

There are 5 plan sets for each of the 5 new problems, on each of the 2 maps (50 

plan sets in all). 

As can be seen in the charts, for score, the standard deviation of DWargus results 

per plan set is consistently higher than that of DQuant results. Being highly diverse, 
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the DWargus score sets always include the highest recorded score per problem/map 

combination (while DQuant sets do not). The F-test score results indicate that the 

difference between the variances of the DWargus and DQuant score data sets is 

statistically significant, at the 95% confidence level, for all problems, on both 

maps, with the DWargus data set displaying the greater variance. 

For the secondary metric of time, the standard deviation of DWargus results is 

greater than that of DQuant results on all but 2 of the 25 plan sets on the first map, 

and all but 3 out of the 25 plan sets on the second map. The F-test indicates that the 

DWargus data sets display greater variance, and the variance difference is statistically 

significant, at the 95% confidence level, on 4 of the 5 problems on each map.  

On the second map, the difference is statistically significant (with greater 

variance for the DWargus data set), at the 90% confidence level, on the remaining 

problem. For the remaining problem on the first map, the variance is slightly 

greater for the DQuant data set, but the difference is not statistically significant. 

To sum up, DWargus results are significantly more diverse than DQuant results on 

all problems for the score metric, and on the majority of problems for the time 

metric. This is consistent with the expectations. 
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   Figure 14. Standard deviation of game scores and time (game duration) 
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In terms of plan quality, it has been noticed that plans retrieved using DWargus 

(and, consequently, the adapted plans based on them) tend to be shorter, on 

average, than plans retrieved using DQuant (the reason for this should be obvious 

from the way in which the two metrics are computed, with DQuant easily increasable 

by lengthening any of the compared plans, as long as the added actions are not 

encountered in the other plan). Plan length relates to the time it takes to execute the 

strategy outlined in the plan. It follows that shorter plans may, in this context, be 

preferable to longer ones. This suggests that well-chosen qualitative distance 

metrics can also help ensure that retrieved plans are of good quality. 

 

8.4  DivFF vs. DivCBP 

8.4.1 Experimental Setup 

The Wargus domain is once again used for evaluation. DivFF and DivCBP are used 

to generate battle plans for various game scenarios, varying in terms of number of 

armies of each type making up the team controlled through the generated plans. 

Both systems are used with the qualitative distance metric DWargus (Equation 13), 

which was shown to produce significantly higher game diversity than the baseline 

quantitative distance metric (Equation 4). In each session, each planner was used to 

generate 4 diverse plans. 
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Test Problems. The 5 problems in Chapter 8.3, describing varied game 

configurations, are used for evaluation.  

  For DivCBP, the game configurations specify the number of friendly armies of 

each type as well as the number of units in each army.  

  For DivFF, the configurations include the following additional information 

needed for the domain description: (1) the coordinates of the units in the initial 

state, (2) the waypoints via which fighting units can move, and (3) a goal 

specifying that at least one army should have attacked. While, conceptually, the 

goal of every game is to win, this cannot be represented through a unique state 

configuration, especially since enemy information is not included in state 

descriptions. This additional information provided to DivFF does not influence its 

ability to enforce plan diversity, as it is not used by the DWargus plan distance metric. 

 

Game Configuration. The game configuration remains largely the same as in 

Chapter 8.3. The only change is the replacement of archer units with gryphon rider 

units, which make game-play sessions more varied and compelling. Unlike land 

units, gryphon riders move by flying, which makes them impervious to many types 

of attack, and often lethal if their attacks succeed. However, they can be escaped 

rather easily by fleeing, as they move slowly and need time to power up between 

attacks. This creates more game variation, irrespective of the algorithm used to 

generate the game plans.  
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  Games are run on the two topologically different maps described in Chapter 

8.3: both maps consist of two areas divided by an obstacle. In the first map, there is 

a single pass through the obstacle, whereas, in the second map, there are two 

passes, enabling strategic decisions that would not be applicable on the first map. 

 

DivCBP Case Base. The case base introduced in Chapter 8.3, which contains 100 

cases with plans generated using the FF planner, is used.  

  However, in order to put to test the expectation that the performance of 

DivCBP will be lower with small case bases, and will improve as the size of the 

case base increases, the size of the case base varies from 25 to 100 cases, thus 

simulating the incremental construction of a case base as more and more cases 

become available.  

  The variant of DivCBP using a case base with n cases will be referred to as 

DivCBPn. The cases added to the case base at each incremental increase are chosen 

randomly. That is, the case base is not specifically tailored towards diversity. 

However, as the number of cases increases (with new cases being chosen 

randomly), plan diversity in the case base is also likely to increase. 

 

8.4.2 Evaluation Methods 

Three categories of evaluation metrics are used to assess the performance of 

DivCBP and DivFF.  
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  First, it is assessed how successful the two systems are at producing sets of 

plans that are diverse based on the specified distance metric. This is the standard 

type of plan-set diversity assessment conducted previously in generative planning 

(Myers and Lee, 1999; Srivastava et al., 2007).  

  Second, planning time is reported on.  

  Third, to show how plan-set diversity reflects on actual game-play diversity, 

the end-game score and game duration variation obtained when running the 

generated plans in the Wargus domain are reported.  

  Next, each of these types of evaluation metrics will be discussed in detail. 

 

Plan-Set Diversity. It is first assessed how successful the compared planning 

systems are at generating sets of plans that are diverse, by using the evaluation 

metric Div (Equation 2, repeated below for convenience) with distance metric D = 

DWargus. With this distance metric, the maximum diversity value for a set of plans is 

0.65, and corresponds to a set of plans in which each plan uses an army of a 

different type (out of the 4 available ones: peasants, soldiers, gryphon riders, and 

mages) to attack. 

 

                                 
       

           

 

                                    (2) 
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  In Equation 2, π is a plan,   is a non-empty plan set, and D:   ×    → [0,1] is 

a plan distance metric. 

  The hypothesis with regard to this evaluation criterion is that, when equipped 

with a sufficiently large case base, DivCBP will be more successful than DivFF at 

consistently imposing the given distance metric on the set of generated plans. It is 

to be expected that the sets of plans produced using DivCBP with case bases of a 

certain size will have consistently greater Div scores than the sets of plans produced 

using DivFF. 

 

Planning Time. Plan generation time is measured in seconds. For DivFF, 

preprocessing time (preprocessing is conducted only once, before all planning 

sessions) and planning time for each of the four generated plans are measured. For 

DivCBP, retrieval and adaptation time for each of the four plans are measured.  

 

Game-play Diversity. To examine the connection between plan set diversity, 

assessed by analyzing the generated plans themselves, and in-game behavior, the 

plans are run in the game and the variation of game-play sessions is evaluated using 

the standard deviation of Wargus score and game-play time (the duration, 

measured in game cycles, of game-play sessions). 

  The hypothesis is that plan sets obtained using whichever of the two systems 

produces more highly diverse plan sets consistently will produce greater game-play 
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variation in most instances. It is to be expected that, when run in the game, plans 

generated using the system in question will produce more variation (as measured 

using standard deviation and assessed using the F-test) of Wargus score and time 

than plans obtained using the other system. However, game variation is also likely 

to be affected by the inherent nondeterminism of the game, which can cause even 

repeated runs of the same plan to produce different results, particularly in terms of 

game duration. 

 

8.4.3 Experimental Results 

Plan-Set Diversity. Plan set diversity values are shown in Figure 15. It can be 

observed how DivCBP (with α = 0.5, as in Chapter 8.3) already attains maximum 

plan set diversity, for all problems, with a case base containing only 30 (out of 100) 

cases. Furthermore, once this happens, DivCBP always generates maximally 

diverse plan sets (Div = 0.65), thus confirming the expressed expectations. 

  On the other hand, it is also confirmed that DivFF has the advantage of being 

able to produce maximally diverse plan sets at any time, while DivCBP is only able 

to do so after the case base has become sufficiently large. However, the success of 

DivFF at generating maximally diverse plan sets depends largely on chance 

(considering the right candidate states first; while DivFF can theoretically generate 

all possible plans, this, in practice, is never the case). Out of the 25 plan sets it 
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produces for all problems, only 2 are maximally diverse; the average values per 

problem attest to less successful diverse-plan-generation sessions.  

 

          

Figure 15. Plan Set Diversity (Equation 2, with D = DWargus) for DivFF and DivCBP with 

case bases of different sizes 

 

 

            

Figure 16. Planning Time for DivFF and DivCBP with case bases of different sizes 
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  In addition, it has been ascertained that DivCBP can be encouraged to obtain 

greater plan-set diversity by lowering the value of the α parameter in Equation 12 

(thus promoting plan diversity over state similarity). When the value of α is 

lowered from 0.5 to 0.35 for DivCBP25, the system consistently produces 

maximally diverse plan sets for all problems (which DivFF never achieves). 

 

Planning Time. Figure 16 shows planning time for DivFF and DivCBP. All tested 

versions of DivCBP are faster than DivFF. 

 DivFF planning time increases steeply with the size of the initial state (i.e. the 

number of objects in the initial state, which in this case, consist mostly of unit 

armies and waypoints that the units can use for movement), due to the grounding 

bottleneck and to the increase in the number of states in the search space (which is 

a factor of the number of available objects). 

  DivCBP planning time is, on the set of test problems, unaffected by the size of 

initial states. It increases with the size of the case base, but at a slow rate. 

 

Game Diversity. Score and time (game duration) standard deviation results are 

shown in Figure 17. Therein, each point represents the standard deviation of score 

or time (as indicated) for one plan set of 4 plans, where each plan is run in the game 

5 times. There are 5 plan sets for each of the 5 problems, on each of the 2 maps (50 

plan sets in all).    
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   Figure 17. Standard deviation of in-game results (score and time) 

 

  

  The two data sets in each chart correspond to results obtained using DivFF and 

DivCBP100 for plan generation. DivCBP100 is representative of all DivCBP 

variants which always produce maximally diverse plan sets on all test problems 

(starting from DivCBP30). As these variants of DivCBP produce very similar 
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diverse plan sets, they were not tested comparatively in the game, as any difference 

in variation between them might more reasonably be attributed to the 

nondeterminism of the game, than to the particular merits of any of the variants. 

Beyond obtaining the maximum diversity based on the specified distance metric 

(which all these variants do), there is nothing more the compared planning systems 

can achieve in terms of diversity. 

  For both score and time, the standard deviation per plan set of the DivCBP 

results is, on average, higher than that of the DivFF results on 3 out of 5 problems 

(Problems 1, 4 and 5) on each map. On the remaining two problems, standard 

deviation is roughly the same, with no algorithm being clearly much better than the 

other in terms of diversity, though DivFF plans will occasionally produce results 

far below the problem average (which is never the case with DivCBP plans). 

  F-test results show that the difference between the variances of the DivFF and 

DivCBP score and time data sets is statistically significant, at the 95% confidence 

level, for the 3 problems on which the variation of DivCBP results is clearly higher, 

on both maps. For the remaining two problems, the difference in variation is not 

statistically significant on any of the maps. 
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8.5 Plan-Based Character Diversity 

8.5.1 Experimental Setup 

Game-character diversity based on diverse plans retrieved using DivCBP is 

showcased in Wargus, thus demonstrating character-trait diversity in an 

environment which does not normally ensure it.  

  Character diversity is based on the diversity of plans acted out by characters, 

where plans are represented as sequences of actions, such as <move to location 

1><attack enemy soldier><collect treasure>. Such plans, made up of unitary 

actions that a character can execute, can be created easily based on player game-

play traces, without the knowledge engineering required by HTN planning, which 

has also been used for the purposed of diversifying character behavior (Paul et al., 

2010). In terms of domain-specific knowledge requirements, the availability of a 

plan repository (e.g. collected from logs of players’ actions) and of user-defined 

plan comparison criteria (distance metrics) are assumed.  

  The described methods can also be used for characters operated by finite-state 

machines, as finite state machines also specify low-level actions which the 

character should execute. 

  To retrieve diverse plans, DivCBP is used with the distance metric DChar 

described in Chapter 7 (Equation 19) and α = 0.5. Retrieved plans are run in the 

game as they are, as adaptation is not necessary.  
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  The case base contains 100 cases for the 4 unit categories (peasant, soldier, 

archer, and mage cases). While certain case-base plans are significantly different in 

terms of character behavior, a lot of them vary in ways which do not make for 

different character types (e.g. taking different paths to the same target map 

locations).  

  The game scenario is as described in Chapter 7.1. 

  The following possible game outcomes, indicating ways in which running a 

character plan affects the game environment, are recorded: the gold has been 

collected, the gold has not been collected; the character’s friend is free, the 

character’s friend is captive and the character is alive, the character is dead. 

  By recording and comparing these outcomes, one can determine whether the 

diverse plans that are generated actually lead to noticeably different game-play.   

  As experimental baseline, an alternative way of attempting to create diverse 

plans without any knowledge engineering at all is used: selecting plans from the 

case-base randomly. However, as will be shown, this does not guarantee significant 

diversity as reflected in game outcomes.  

  For each unit category, 5 sets of plans (of 6 plans each) are retrieved and run in 

the game. There are 30 game-play sessions per unit, in all; and 30 corresponding 

game outcomes are recorded. 
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 Figure 18. Number of outcomes of each type for each of the four unit categories 
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8.5.2 Evaluation Method 

To evaluate behavior diversity, Shannon entropy is computed over the possible 

combinations of modifications to the game map caused by running the retrieved 

character plan. 

  The higher the entropy, the higher the uncertainty regarding the final map 

status. When this uncertainty is high, the generated plans are diverse in terms of the 

ways in which they affect the game environment when executed. 

 

8.5.3 Experimental Results 

In Figure 18, the bars represent the number of outcomes of each type for DivCBP 

and baseline Random selection (as indicated). The closer the bars corresponding to 

one method are to each other in terms of height, the more spread out the results are 

over the possible outcomes, indicating greater game-play variety. As can be seen, 

DivCBP results are consistently better spread out over the possible outcomes than 

Random results. 

  The entropy of DivCBP results is consistently greater than that of Random 

results (1,1,1,1 vs. 0.73; 0.71; 0.59; 0.69), indicating that, when using DivCBP, the 

uncertainty regarding the character type that will be chosen is greater; with random 

selection, certain character types tend to be favored over others. 
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  This indicates that selection based on DivCBP more reliably produces diverse 

character types (the diversity of which is reflected in different in-game outcomes) 

than Random selection. 

 

8.6 DivNDP and Policy-Based Character Variation 

8.6.1 Experimental Setup 

DivNDP is implemented using JavaFF (Coles et al., 2008) as the heuristic planner 

employed by NDP.  

  The implementation of the NDP component of DivNDP is similar to the one 

described by Fu et al. (2011), including their two extensions, state reuse and goal 

alternative, which are shown to contribute to outperforming other strong-cyclic 

planners.  

  As in the work of Fu et al. (2011), and unlike in that of Kuter et al. (2008), 

who are restricted by the need to make NDP usable with any heuristic planner 

without modifying the planner itself, changes are made directly to JavaFF.  

  Sets of k = 4 diverse policies are generated. The value of α is set to 0.8, so as to 

encourage the generation of highly diverse policy sets. 

  To showcase the domain-independence of DivNDP, it is first tested on the 

synthetic nondeterministic planning domains Nondeterministic Blocksworld and 

Robot Navigation (with 7 doors), as described in Kuter et al. (2008) and Hogg, 
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Kuter, and Muñoz-Avila (2009). For these domains, the quantitative distance 

metric DPS (Equation 14) is used.  

  Next, the main experimental evaluation is conducted on the Wargus domain. 

Actions in Wargus are nondeterministic (e.g. the success of an attack action is not 

guaranteed). Using nondeterministic planning makes it possible for the generated 

solution to succeed in the game even in the case of unexpected losses. For example, 

a policy might specify that a soldier should attack if it is alive, and that an archer 

should attack otherwise. Furthermore, the policy might indicate that a new soldier 

unit should be created if no such unit is available. 

  The game scenarios vary in terms of the elements on the map (e.g. villages, 

treasures) and the locations of these elements. The distance metrics are independent 

of the map (i.e. they do not specify any particular map coordinates). Units can 

move to various map locations, build villages, collect available treasure, and attack 

hostile and neutral locations.  

  Nondeterminism manifests itself in battle: the result of an attack action can be 

either success (the unit has killed the enemy without being killed itself) or failure 

(the unit was killed). A dead unit can be replaced by creating new units: this 

ensures that it is always possible for DivNDP to generate strong cyclic policies. In 

the initial state, units of all types are available.  

  The goal is to destroy all enemies on the map. 
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  In Wargus, both inflation-based and goal-achievement qualitative distance 

are exemplified.  

  Goal-achievement distance is computed using Equation 24, which considers 

policies to be different if the types of units chosen to attack with when all units are 

still available are different. For example, the state of all units being alive and at the 

enemy camp might be associated with the action of a soldier attack in the first 

policy, and with the action of an archer attack in the second one. This reflects 

tactical variation.  

  In Equation 24, π and π’ are policies, and FirstAtt(π) is the type of attacking 

unit (archer, soldier, mage, or peasant), while d is a domain-specific degree of 

distance between unit types (e.g. a peasant is considered more similar to a soldier 

than to a mage because the former two employ short-range attacks, while the latter 

employs long-range attacks).  

 

                 
                             

                                   
      (24)   

 

  Inflation-based distance (Equation 25) is used to simulate diversity in terms of 

character personality traits. In Equation 25, π and π’ are policies, CharTrait(π) is 

the character trait reflected in policy π through small side-stories not essential to 

reaching the goal, while d’ is a degree of distance between possible personality 



www.manaraa.com

153 
 
 

 

traits. The personality traits represented are: (1) ruthless (attacks non-hostile 

village), (2) hard-working (builds extension to village), (3) greedy (collects 

treasure), (4) indifferent (does none of the above, focusing solely on achieving the 

goal).  

 

                    

 
                               

                                      
                             (25)   

 

  These two types of qualitative distance are compared to a quantitative distance 

metric. It will be shown that by using qualitative policy distance metrics, which 

encode meaningful, domain-specific differences between policies, the game 

environment is influenced in more diverse ways than by using quantitative policy 

distance metrics, which are domain-independent. 

  For quantitative distance (RelDPS, Equation 18) the efficiency of DivNDP has 

been enhanced through a modification tailored to quantitative distance metrics like 

RelDPS: the distance between the current partial plan and the set of previously-

generated policies is computed cumulatively, and not completely recomputed at 

each step.  
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8.6.2 Evaluation Methods 

To evaluate the diversity of the sets of policies generated with DivNDP on the 

synthetic domains, policy-set diversity (Equation 2) is used with the corresponding 

distance metric.  Using the same metric for policy generation and evaluation is fair 

because, during policy generation, DivNDP compares partial plans to complete 

policies, whereas, in the evaluation, the diversity of the actual set of complete 

generated policies is computed. 

  For the Wargus domain, similarly to the evaluation in Chapter 8.5, Shannon 

entropy is computed over the possible combinations of modifications to the game 

map (e.g. treasure picked up, villages destroyed, units lost) caused by running the 

policy until the goal has been achieved. For goal-achievement distance, the map 

elements in the enemy-camp region of the map are considered, while, for inflation-

based distance, map elements in the other regions are considered.  

  Note that all policies lead to the achievement of the goal. However, while all 

final states include the achieved goal, there is variation regarding the other facts in 

the final state: e.g. whether villages have been plundered or extended. None of 

these possible facts are considered more desirable than others a priori. 

  In addition to indicators of diversity, the average generated policy size is also 

reported. As Kuter et al. (2008) point out, while no good measure of quality is 

known for nondeterministic planning, policy size should be a good indicator of 
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quality (with smaller policies being preferable). As in the work of Fu et al. (2011), 

policy size is measured as number of state-action pairs.  

 

8.6.3 Experimental Results 

Synthetic Domains. Experimental results for Nondeterministic Blocksworld and 

Robot Navigation are presented in Figures 19 a) and b), respectively. Experiments 

were run on 100 problems per domain, divided into multiple sets by size (measured 

as number of blocks for Blocksworld, and number of objects that must be moved 

for Robot Navigation). As in the work of Hogg, Kuter, and Muñoz-Avila (2009), 

problems are of up to 8 blocks for Nondeterministic Blockworld, and of up to 5 

objects for Robot Navigation. Each point on each of the two charts represents the 

average policy-set diversity (Equation 2, with D = DPS) for 20 problems of the 

same size (each of them run 10 times).  

  Policy-set diversity values are, for the most part, very high. While the 

diversity is lower for the least difficult problems (which have small search spaces, 

not allowing for much variation), it increases quickly and remains above 0.5 for the 

majority of problems in both domains. 

  The average policy size of the diverse solution sets is only slightly higher than 

that of the first generated policy, indicating that quantitative diversity is not 

achieved by inflating policies unreasonably.  
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Figure 19. Policy-Set Diversity Results on the synthetic domains: (a) Nondeter-

ministic Blocksworld, (b) Robot Navigation 

 

 

Figure 20. Map Entropy Results on the Wargus domain: Quantitative Distance vs.            

(a) Goal-Achievement, (b) Inflation-based Distance 

 

  Wargus Domain. Experimental results for the Wargus domain are presented 

in Figures 20 a) for goal-achievement qualitative distance and 20 b) for inflation-

based qualitative distance. Each point on each chart is the average entropy value 

over multiple runs of generated policies for one game scenario. Each policy is run 
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in the game 25 times. Note that, due to the nondeterminism of the game, when 

running the same policy in the game multiple times, there can be different 

outcomes every time.  

  For both inflation-based and goal-achievement qualitative diversity, the 

entropy is consistently greater for qualitative diversity than for quantitative 

diversity.  

 Policy-set diversity (Equation 2, using the corresponding qualitative distance 

metric) is always maximal for both inflation-based and goal-achievement 

qualitative diversity.  

  Average policy size is slightly larger for quantitatively-diverse policies than 

for qualitatively-diverse policies. Quantitatively diverse policies are often inflated 

in a non-meaningful way, containing state-action pairs added solely for the purpose 

of increasing policy-set diversity.  
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9  Related Work 

Diversity has diverse manifestations throughout Artificial Intelligence. They 

include solution diversity, goal diversity, search-space diversity, and problem 

formulation diversity. Diversity is created through specifically-designed 

techniques, using distance metrics or knowledge-intensive domain models; or 

implicitly, as a side effect of techniques primarily serving other purposes. It is 

pursued for its own sake, as an aid to exploring vast search spaces, and as an 

approach to fault-tolerance. Planning application domains which have been shown 

to benefit from diversity, or which diverse planning techniques have been applied 

to, include intrusion-detection (Boddy et al., 2005; Roberts et al., 2009), robotics 

(Lussier et al., 2007), travel planning (Myers and Lee, 1999), and interactive 

storytelling (Guilherme da Silva, Ciarlini, and Siqueira, 2010). Outside planning, 

diversity appears in branches of Artificial Intelligence including case-based 

reasoning, general heuristic search, genetic algorithms, and constraint 

programming. 

In the following subchapter (Chapter 9.1), I exemplify diversity in branches of 

Artificial Intelligence other than planning, most notably in case-based reasoning for 

analysis tasks. Then, I address related work in planning: first, I explore different 

approaches to comparing plans for purposes other than generating diverse sets of 

plans (Chapter 9.2); then, I provide an overview of alternative approaches to 
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diversity in planning (Chapter 9.3). Chapter 9.4 is dedicated to various relevant 

approaches to modeling characters and diversifying characters’ behavior in 

computer games and other types of interactive fiction. Finally, I present an 

overview of comparative studies of first-principles and adaptation-based planning 

techniques (Chapter 9.5). 

 

9.1 Diversity in Artificial Intelligence 

9.1.1 Case-based Reasoning 

Solution diversity has been explored extensively in case-based reasoning for 

analysis tasks, as defined in Chapter 2.3 (Smyth and McClave, 2001; Shimazu, 

2001; McSherry, 2002; McGinty and Smyth, 2003; Bridge and Kelly, 2006).  

  Typically, case retrieval in case-based reasoning (see Chapter 2.3) is conducted 

based on similarity of the candidate-case problem to the new problem, or the 

estimated effort it would take to adapt the solution of the candidate case so that it 

fits the new problem (Aamodt and Plaza, 1994; Smyth and Keane, 1998). Smyth 

and McClave (2001) introduced the additional retrieval criterion of case diversity, 

citing recommender systems as the main application domain in which diversity 

would be useful.  

  Recommender systems match a user’s need, be it clearly or formulated or not, 

to an entry from a library, most commonly describing a product or service offered 

by an e-commerce provider.  
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  Content-based recommender systems retrieve cases containing descriptions 

of products or services (commonly represented as attribute-value pairs). Cases are 

assessed based on how well they seem to match a user’s needs (expressed 

specifically through a query or inferred from item ratings in a user profile).  

  Collaborative recommender systems retrieve cases representing items which 

have appealed to individuals the profiles of which are assessed to be similar to the 

current user’s (Bridge and Kelly, 2006). Actual item descriptions are not used. 

  Smyth and McClave (2001) propose an algorithm for increasing the diversity 

of retrieved sets of cases. Two variants of the algorithm are introduced: Greedy and 

Bounded Greedy.  

  The Greedy algorithm is the basis of Algorithm 7, and its general principles 

have already been explained (Chapter 4.2). Bounded Greedy is a variant of Greedy 

intended to be used when dealing with large search spaces, in which repeatedly 

computing relative diversity between the current candidate case and the set of 

previously-retrieved cases is costly.  

  Bounded Greedy consists of first ordering the cases based on similarity to the 

new problem then conducting Greedy retrieval only on a subset of cases ranked the 

highest.  

  Smyth and McClave define the diversity of a set of cases as the average 

dissimilarity of pairs of cases in the set, a definition which is used herein with the 

modification that plans, rather than cases, are subject to comparison. 
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  Shimazu (2001) describes a different method for the retrieval of a diverse set 

of cases by a recommender system. The method consists of first retrieving a case 

that is maximally similar to the new problem, then retrieving a case that is 

maximally dissimilar to the first case, then retrieving a case that is maximally 

dissimilar to the first two cases. While retrieving a set of maximally diverse cases, 

this method takes no measures to preserve similarity to the new problem of the 

second and third retrieved cases.  

 McSherry (2002) proposes two algorithms which address the similarity and 

diversity trade-off:  Similarity-Preserving Diversification, which creates diversity at 

no expense to similarity, and Similarity-Protected Diversification, which, while not 

keeping similarity intact, helps reduce the impact upon it.  

 The Similarity-Preserving Diversification algorithm consists of ranking cases 

based on their similarity to the new problem, then grouping them in “similarity 

layers” based on the value of the similarity between them and the new problem. All 

cases from all but the lowest similarity layers are retrieved. In addition, a subset of 

cases from the lowest similarity layer are selected: the cases which increase the 

diversity of the set of retrieved cases. If there is only one similarity layer, the case 

in it ranked highest based on diversity is retrieved, then the diversifying method is 

used on the remaining cases. 

 Similarity-Protected Diversification follows the same steps, but uses 

“similarity intervals” instead of similarity layers: the range of similarity values of 
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cases with regard to the new problem is divided into intervals of width α. Unlike a 

similarity layer, a similarity interval does not necessarily contain only cases which 

are equally similar to the new problem. The leftmost (highest-similarity) interval 

contains cases such that the similarity between them and the new problem is greater 

than 1 - α. 

 Of the methods listed above, Shimazu’s (2001) is concerned primarily with 

diversity, while McSherry’s (2002) Similarity-Preserving Diversification focuses 

on similarity. Greedy and Bounded Greedy (Smyth and McClave, 2001) and 

Similarity-Protected Diversification (McSherry, 2002) are the approaches most 

concerned with providing balance between the two considerations (however, 

Similarity-Protected Diversification supports similarity more strongly than the 

algorithms of Smyth and McClave, 2001).  

 Out of these approaches, that of Smyth and McClave is clearly the most similar 

to the work presented herein: it uses a composite criterion incorporating problem 

similarity and diversity to select all but the first case in the retrieved set. The 

algorithm does not inherently favor either similarity or diversity: the 

complementary weights of the two criteria are adjustable. Algorithm 7 is a variant 

of the Greedy Retrieval algorithm of Smyth and McClave. 

 The Bounded Greedy algorithm is also used by Bridge and Kelly (2006) and 

McGinty and Smyth (2003). 
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 Bridge and Kelly (2006) use Bounded Greedy to demonstrate retrieval of 

diverse sets of recommendations for collaborative (rather than content-based) 

conversational recommender systems, using various types of distance metrics. 

 McGinty and Smyth (2003) describe Adaptive Selection, a diverse-case 

retrieval method intended for conversational recommender systems (Aha, 

Breslow, and Muñoz-Avila, 2000). Conversational recommender systems do not 

produce only a single set of retrieved cases, but conduct a prolonged dialogue with 

the user (as a human salesperson might), proposing sets of products and refining 

their recommendations based on the user’s feedback.  

 Adaptive selection chooses dynamically whether or not to include diversity as 

a retrieval criterion in each recommendation cycle.  

 If the user picks an item that was introduced in the latest recommendation 

cycle, this is judged to mean that progress has been made toward the user’s ideal 

match, hence the next cycle will consist solely of the items which are more similar 

to the selected one (i.e. retrieval occurs based only on the similarity criterion). 

  If the user picks the item that was carried over from a previous 

recommendation cycle (the item which was preferred by the user in the previous 

cycle), this is judged to mean that no progress has been made during the current 

cycle, hence the user would benefit from being presented with a more diverse set of 

choices. Therefore, the next set of recommended items is retrieved using Bounded 

Greedy (Smyth and McClave, 2001).  
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 While no process akin to adaptive selection is being used herein, this technique 

could serve as inspiration for future work handling the efficiency burden of 

generating diverse plans using first-principles planners (see Chapter 10.1 for 

details), or addressing diversity in mixed-initiative planning, wherein the human 

collaborator may benefit more from diverse options at certain times, and from 

similar ones at others.  

 Bridge and Ferguson (2002) enhance diversity through order-based retrieval, a 

method which ranks cases based on ordering operators reflecting more complex 

orderings than that used for traditional similarity-based retrieval. Some such 

ordering operators are shown to be conducive to diversity without necessarily 

incorporating distance measures (although the possibility of defining distance-

based ordering operators is mentioned). The fact that diversity arises as a side-

effect of order-based retrieval, without diversity considerations being specifically 

imposed is a fundamental difference from the approach taken herein, which 

specifically reinforces diversity.   

 Diversity concerns appear in case-based reasoning literature outside 

recommender systems also. Zhang, Coenen, and Leng (2002) use diversity-

enhancing techniques at the retrieval stage of a case-based reasoning diagnosis tool. 

Benefits are expected from retrieving cases which do not reflect the same faults.  

  It must be stressed that most work on diversity in case-based reasoning was 

conducted in the context of analysis, rather than synthesis tasks (see Chapter 2.3 for 
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an explanation of the difference between the two).  My work addresses diversity in 

planning, which is a synthesis task and requires new diverse structures (plans and 

policies) to be created, not just identified in a set of preexisting items. Furthermore, 

in analysis tasks, both the similarity and diversity retrieval criteria are applied to 

the problem component of the case, while, in case-based planning, the diversity 

criterion is applied to the solution plans. Plans, which are complex structures with 

an arbitrary number of actions, each with an arbitrary number of parameters, can be 

considerably more difficult to compare than typical analysis-task case problems 

(e.g. recommender-system item descriptions consisting of a fixed number of 

attributes).  

 Unlike the authors of the related work presented above, Díaz-Agudo et al. 

(2008) address “originality-driven” tasks, which are synthesis (rather than analysis) 

tasks where the objective is to produce a new artifact that is significantly different 

from the items in the case base, thus illustrating creativity (storylines are the 

featured example). However, unlike in my work, the authors do not specifically 

introduce distance criteria in the solution generation process, but note that 

originality occurs as a “side-effect” of other factors: the size of the solution space 

and the need to enforce solution consistency. As a future work direction, they 

mention the possibility of introducing distance-metric-based evaluation at the reuse 

(adaptation) stage of the case-based reasoning cycle, rather than at the retrieval 

stage (as herein). 
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  Another important difference between related work on diversity in case-based 

reasoning and my work is that qualitative diversity is not considered therein. The 

systems described above create quantitative diversity: there are no domain-specific 

degrees of distance between solution elements (quantitative distance metrics used 

include Hamming Distance, as used by Bridge and Kelly, 2006). 

 

9.1.2 Other Branches of Artificial Intelligence 

Search Problems. Beam Search (Newell, 1978) is a variant of heuristic search in 

which only a subset of the generated candidate states are retained during each step 

of the search, thus providing a feasible approach to handling very large search 

spaces. This subset of retained cases is called the beam. As a number of candidate 

states are pruned, this type of search is incomplete: it does not guarantee that a 

solution will be found. The danger is that candidate states which might have lead to 

a good solution will be subjected to pruning, and convergence to local maxima will 

prevent the algorithm from finding global optima. 

  Shell, Hernandez Rubio, and Quiroga Barro (1994) propose a Beam Search 

variant in which the diversity of candidate states maintained in the beam is 

specifically enforced. The reasoning behind this is that more diverse candidates 

will cover a larger area of the search space, reducing the likelihood of convergence 

to local maxima.  
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  While the motivation that diverse candidates provide a better sample of the 

search space is similar to the one invoked herein, the main difference between their 

work and mine (aside from the fact that their work addresses general search, rather 

than search for the purposes of planning) is that they do not pursue diversity for its 

own sake (by aiming to produce a set of diverse final solutions), but use it as a 

means to achieving the objective of finding a solution in a very large search space 

that it is costly/unfeasible to browse exhaustively. The method of selecting diverse 

sets of nodes is similar to the one presented herein in the sense that a composite 

criterion taking into account both adequacy and diversity is used to assess 

candidate states. The purpose of the assessment is to determine whether a state will 

be pruned or maintained as part of the search space. An initial set of states is 

selected based on adequacy only (in order not to forego the states which the regular 

heuristic evaluates as being most promising), then another subset of states, selected 

based on the composite criterion, is added to the previous one. The candidate 

comparison criterion used is quantitative (although the possibility of using 

qualitative criteria is mentioned). 

Multiobjective/Multicriteria Heuristic Search (Stewart and White, 1991; 

Dasgupta et al., 1999; Mandow and Pérez de la Cruz, 2003) is a variant of heuristic 

search conducted in a search graph in which arcs (representing transitions between 

states) have multiple cost values associated to them, each cost value corresponding 

to one different objective that must be pursued in the problem domain (e.g. risk, 
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transportation cost, etc.). The solution to such a problem is a path in the search 

graph that is Pareto-optimal with regard to a set of objectives, or the set of 

nondominated paths from the initial state to goal states. A path is nondominated if 

no other path is at least as good as it in terms of all objectives and better than it in 

terms of at least one objective. MOA* (Stewart and White, 1991; Dasgupta et al., 

1999; Mandow and Pérez de la Cruz, 2003) a variant of the A* heuristic search 

algorithm, is used to solve multiobjective search problems. 

  Unlike in my work, the objective is not diversity for its own sake, but 

optimizing multiple objectives, through one or more solutions.  I address planning 

problems which are not formulated as optimization problems.  

Genetic Algorithms (DeJong, 1975) are search algorithms modeled on the 

processes underlying biological evolution: candidate states called “genotypes” are 

generated through operators named, after the natural processes they mimic, 

“crossover” and “mutation”. A “fitness function” (the counterpart of a heuristic 

evaluation function in regular search) is used to evaluate genotypes and select the 

ones most likely to “reproduce” (i.e. be expanded).  

Diversity was introduced in genetic algorithms in order to alleviate a difficulty 

they have in common with other types of search algorithms: convergence to local 

maxima in the search space. Much like gene pool variety is of inestimable value in 

biology, diversity has been shown to be valuable in genetic algorithms. Steps taken 

both to reduce the similarity of genotypes (DeJong, 1975) and to actively enforce 
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their variation through diversity criteria (Mauldin, 1984) have resulted in 

performance gains. 

As in previously-presented search types, the main difference, in objective, 

between their work and mine is that they do not pursue diversity for its own sake, 

by seeking to produce diverse sets of solutions, but as a means to alleviating the 

issue of convergence to local maxima, so as to improve search performance.  

Constraint Programming. Hebrard et al. (2005) address the issue of generating 

diverse and similar solutions in constraint programming (Rossi, Van Beek, and 

Walsh, 2006) which is used, among others, to solve constraint satisfaction 

problems. Hebrard et al. define a series of similarity/diversity-related tasks and 

propose methods to solve them. The diversity-related tasks are: finding a solution 

such that the distance between it and another given solution surpasses a certain 

threshold, finding the set of k maximally diverse solutions to a problem, and 

finding a set of solutions such that the distance between each of them and another 

given solution surpasses a specified threshold value.  

 Herein, the objective is to find a set of diverse solutions, but maximal diversity 

is not pursued because of the prohibitive size of the search spaces in planning 

problems, particularly nondeterministic planning problems. Also, in my work, there 

are no guarantees of minimal distance in between solutions.  

Goal Variation in Agent-Based Systems. Goal-Driven Autonomy (Molineaux, 

Klenk, and Aha, 2010) is an extension to on-line planning (i.e. planning that is 
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interleaved with execution, rather than being completed prior to it) which allows 

artificial intelligent agents to generate, reason about, and, if necessary, modify the 

goals they are to pursue. Goal modifications are undertaken as a result of 

identifying discrepancies (i.e. conditions, brought about by unexpected events, 

which differ from those assumed when the plan was initially generated) in the 

environment, which the agent monitors. For example, in a combat-based computer 

game domain, in response to an unexpected enemy attack, the current goal might 

change from harvesting enough resources to build a new town hall to taking urgent 

defensive measures.  

  Note the differences between this approach and diverse nondeterministic 

planning as addressed herein: in nondeterministic planning, actions have multiple 

possible outcomes and multiple goals, but the set of goals remains unchanged, 

whereas, in Goal-Driven Autonomy, the goals themselves can change. In the 

former case, it is the solutions which are diverse; in the latter case, it is the goals.  

 

9.2 Plan Comparison 

A number of authors have previously addressed the problem of comparing plans for 

purposes other than generating diverse plans. Fox et al. (2006) and Felner et al. 

(2007) use plan comparison for the purpose of generating plans which are similar, 

rather than diverse. Possible reasons for this endeavor include commitments to 

other agents in multi-agent requirements and the potential preference of human 
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planners in a mixed-initiative context for plans which appear more familiar to them 

(van der Krogt and de Weerdt, 2005). 

  Fox et al. (2006) use plan comparison for the purpose of minimizing, rather 

than maximizing, the difference between a source plan and a target plan produced 

through plan repair. 

  Plain repair is used when execution conditions differ from those expected at 

planning time, or when goals change during execution. It consists of adapting a 

previously-generated source plan into a target plan addressing the identified 

discrepancies in the environment conditions or changes in goals.  

  Producing stable repaired plans is particularly important in high-risk domains, 

in which safety is foremost. Fox et al. use a quantitative similarity metric computed 

by adding the number of actions in the first plan but not the second to the number 

of actions in the second plan but not the first (Equation 4 is based on this metric). 

Planning is conducted using a modified version of the LPG (Gerevini, Saetti, and 

Serina, 2003) planner. 

Felner et al. (2007) also address the situation in which it is necessary to find a 

new plan that is similar to a previously-generated plan which can no longer be used 

due to discrepancies between assumptions made at planning time and the actual 

environment conditions. The distance metrics they use are also quantitative but, 

unlike the metric used by Fox et al. (2006), they are not concerned with the actions 

plans consist of, but with the intermediary states assumed to be brought about by 
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the actions: the plans are represented as paths in graphs in which the states are 

nodes. Taking as input a graph-based representation of the planning domain, a 

previously-generated plan represented as a path in the domain graph, and a plan 

distance metric, their algorithm uses best-first search with various heuristics to 

generate plans that are similar to the preexisting input plan. The work of Felner et 

al. is similar to mine in that it is flexible with regard to the distance metric used to 

compare plans: this distance metric is part of the input. 

While pursuing the opposite goal (solution similarity rather than diversity), the 

approaches of Fox et al. (2006) and Felner et al. (2007) are similar to the one 

presented herein in that they modify regular heuristic-search methods to include 

plan-comparison criteria.  

Myers (2005) conducts qualitative plan comparison through the use of a 

domain metatheory. A domain metatheory is an extended description of the 

planning domain in terms of high-level attributes (such as features of operators, e.g. 

whether a transportation method is aerial or by ground), supplementing the 

standard domain model.  

The qualitative comparison takes place within the HTN planning paradigm. 

The objective is to summarize plans and highlight their similarities and differences 

in a way that is immediately meaningful and useful to the human users they are 

presented to. This time, differences are identified not by using distance metrics 

focusing on the low-level components of plans (e.g. actions and states), but on the 
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basis of high-level characteristics described in the metatheory, combined with the 

extensive task descriptions required for HTN planning. These differentiation 

criteria include the roles played by various objects in the context of tasks, and high-

level characteristics of tasks (such as difficulty, cost, and risk). Comparison is 

conducted both within pairs of plans and over entire sets of plans. An example of 

the latter is identifying a plan which has a characteristic unique within the analyzed 

set, e.g. a very high risk associated to it, when the risk level of all other plans is at 

most moderate. Another example is identifying two maximally diverse plans within 

a set of plans. Unlike in my work, actual diverse plan generation is not conducted 

here: this is merely a question of comparing already-available plans. 

 

9.3 Diversity in Planning 

Tate, Dalton, and Levine (1998) address qualitative solution diversity in a mixed-

initiative planning setting. Their method involves populating a “course of action” 

matrix with varied potential solutions to a problem (referred to as “options”). The 

matrix is used to compare and evaluate these options. A great part of the cognitive 

load, including that associated with creating diversity, falls upon the human 

planners (with the AI planning system serving as aid, rather than principal planner), 

making this approach vastly different from those proposed herein.  

  In generative planning, quantitative plan diversity has been explored by 

Srivastava et al. (2007) and Nguyen et al. (2012). They describe a diversity-aware 
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modification of the LPG (Gerevini, Saetti, and Serina, 2003) heuristic planner. This 

diverse planning system is subsumed by the general diverse planning framework 

presented here, i.e. it iteratively generates diverse plans using a composite 

evaluation criterion adding to the regular LPG heuristic function a diversity 

component. The distance metric used by this diverse planner is similar to Equation 

4. The main differences between their work and mine are that they only generate 

quantitatively diverse plans, which, as has been shown, may not be meaningfully 

diverse; they only address deterministic planning problems, and they only evaluate 

their work on synthetic domains, while the systems presented herein are evaluated 

on the Wargus real-time strategy game domain as well synthetic domains. 

Srivastava et al. and Nguyen et al. also present a diverse version of a constraint-

satisfaction planning system, demonstrated with multiple distance metrics.  

  In addition, Nguyen et al. (2012) also address the problem of generating sets of 

plans maximizing multiple objectives (plan makespan and execution cost) in 

temporal-planning-with-preferences settings in which the user preferences are only 

partially expressed. My work is concerned neither with planning with preferences 

nor with generating sets of plans that optimize objective functions. 

  A method for qualitative-diversity-aware plan generation has been proposed by 

Myers and Lee (1999). Their approach uses a domain metatheory (of the same type 

as the one used by Myers, 2005, for plan comparison, as described in Chapter 9.2) 

to divide the search space into regions representing sets of qualitatively different 
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plan characteristics, then “biases” the planner towards making choices resulting in 

different such regions being represented in the generated set of plans. Their method 

is demonstrated in the context of HTN planning. Unlike the method of Myers and 

Lee, the qualitative solution generation approach (or, rather, the flexible approach 

which supports both qualitative and quantitative diversity) presented herein does 

not rely upon a metatheory: it only requires a qualitative distance metric, in 

addition to the basic planning domain description.  

  Eiter et al. (2011) address solution similarity and diversity in the context of 

answer-set programming problems. Answer-set programming (Gelfond and 

Lifschitz, 1991) is a declarative programming paradigm similar to propositional-

satisfiability solving. Eiter et al. define similarity/diversity-related tasks similar to 

those described by Hebrard et al. (2005) in the context of constraint-satisfaction 

problems (see Chapter 9.1.2). One of the application domains they target is 

deterministic planning: planning problems are encoded as answer-set programming 

problems and solved with proposed diversity-aware answer-set programming 

techniques (involving, among others, reformulating problem descriptions so as to 

include the diversity requirements). The distance metric used to compare plans is 

quantitative and the planning domain used for evaluation is synthetic 

(Blocksworld).  

Lussier et al. (2007) propose an application for diversity as a means of 

achieving fault-tolerance in the context of autonomous systems (robots). Sets of 
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diverse plans are used to increase the robustness of such systems. An exemplified 

diversity-based recovery mechanism is that of reacting to error detection by 

switching to a variant of the planner using a different variant of the knowledge 

model, in the expectation that the change will likely lead to generating a plan 

sufficiently different that the error will not be encountered. Plan diversity, 

therefore, is not created by using a diversity-aware modification of a planning 

technique (as herein), but through variations in the knowledge presented to the 

planner. 

  In probabilistic nondeterministic planning, Bryce et al. (2007) generate multi-

option plans, using a modified version of the LAO* algorithm (Hansen and 

Zilberstein, 2001). Multi-option plans associate to a state multiple actions, each 

optimizing the planning objectives in a different way: a multi-option plan is a 

representation of the set of plans that is Pareto-optimal with regard to the set of 

objectives. This endeavor is related to multiobjective heuristic search (Section 

9.1.2). I address non-probabilistic nondeterministic planning, in which it is not 

assumed that goals are encoded as objective functions, hence planning tasks are not 

handled as optimization tasks, and one cannot create diversity by generating sets of 

solutions optimizing multiple objectives. In the work of Bryce et al., diversity 

arises from optimizing multiple objectives; in my work, solution-set diversity is, in 

itself, the objective. 
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Sroka and Long (2012) propose a research direction also concerned with 

generating the Pareto set of plans optimizing multiple objectives: this time, for 

deterministic planning problems. Unlike in the work presented herein, they assume 

the availability of an objective function (expressing plan-quality-related 

preferences) as part of the problem description, and separate from the problem goal. 

They propose plan comparison to be conducted using this objective function. 

Diverse plan sets are generated by running the planning system on the same 

problem multiple times, each time with a slightly different objective function (the 

weights assigned to the objectives in the function vary). The distance metrics used 

in my work (unlike the objective functions in theirs), remain the same over the 

multiple runs of the planner, and it is the planner itself that has been modified for 

diversity.  

Guilherme da Silva, Ciarlini, and Siqueira (2010) use nondeterministic 

planning techniques to generate storylines for interactive storytelling domains. One 

of their main justifications for using nondeterministic, rather than deterministic, 

planning techniques is the need to create diverse storylines. Storyline diversity is 

not enforced specifically, but considered to be an implicit effect of using 

nondeterministic planning, which allows for multiple possible outcomes for each 

action.  

As part of the motivation for diversity in planning, I have mentioned the 

usefulness of diverse plans reflecting different possible attack strategies in 
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intrusion detection. This need was initially pointed out by Boddy et al. (2005). 

Their approach to diversity was repeatedly tweaking the domain and problem 

descriptions themselves so as to reflect varied vulnerabilities. Hence, the generated 

plans were not diverse solutions to the same problem, but solutions to different 

problems.  

Roberts et al. (2009) address diverse plan generation specifically. They 

describe ITA*, a diverse planner based on the state-of-the art heuristic-search 

planner LAMA (Richter and Westphal, 2010). It does not use modified planner 

heuristics, but keeps a list of state-operator pairs that have been included in 

previously-generated plans, and prioritizes state-operator pairs which are not 

included in this list. This method is inherently quantitative: any distinct state-action 

pairs are maximally distant; there are no domain-specific degrees of distance 

between pairs. While motivated by needs characteristic of the intrusion-detection 

field, ITA* is domain-independent. It is evaluated experimentally using, as 

baseline, DivA*, a variant of the DivFF planner presented in Chapter 4.1, with the 

quantitative distance metric. While the general principles of DivFF as well as the 

quantitative distance metric used by it remain the same, various changes are being 

made in order to maintain fairness in the experimental comparison against ITA*: 

the most notable change is the use of A* heuristic search rather than the heuristic 

search method specific to FF. The authors conclude that the two diverse planning 

methods (their own and the one based on diverse DivFF) can be seen as 
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complementary, with various relative strengths and weaknesses. The comparison is 

conducted solely using quantitative diversity, as ITA* is specifically tailored 

towards quantitative diversity. 

 

9.4 Game Character Modeling and Diversity 

Complex game character modeling has been explored to such a great extent that, 

rather than attempt exhaustiveness, I will cite several illustrative examples. Non-

player characters (NPCs) have been modeled in terms of personality traits (McCoy 

et al., 2010), emotional states (Cavazza and Charles, 2005; Strong et al., 2007; 

Cavazza et al., 2009), relationships (Cavazza and Charles, 2005; McCoy et al., 

2010; Thue et al., 2010), and needs (McCoy et al., 2010; Paul et al., 2010). In the 

related field of behavioral robotics, emotions are modeled by Arkin et al. (2003).  

  Substantial work deals with the complexities of generating interesting and 

realistic language/dialogue that is character and situation-appropriate (Cavazza and 

Charles, 2005; Strong et al., 2007; Lin and Walker, 2011).  

  Another significant area of focus is NPC behavior in the context of storyline 

consistency and variety (Cavazza, Charles, and Mead, 2002; Porteous, Cavazza, 

and Charles, 2010a; McCoy et al., 2010; Thue et al., 2010). Several of these 

approaches to character modeling use HTN planning (Cavazza, Charles, and Mead, 

2002; Cavazza and Charles, 2005; Paul et al., 2010) or other types of task-
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decomposition-based planning (Porteous, Cavazza, and Charles, 2010a) to control 

storyline development and character behavior.  

  Learning character models from human or human-like behavior has been used 

as an approach to overcoming the knowledge-acquisition difficulties (Lin and 

Walker, 2011; Chang et al., 2011).  

  In contrast to the above-mentioned work, the approach taken herein is creating 

NPC behavior diversity (based on plan/policy diversity) that simulates personality 

diversity, rather than modeling NPC personality which is then reflected in varied 

behavior.   

  Szita, Ponsen, and Spronck (2009) study diversity in the context of adaptive 

game AI based on reinforcement learning. Their motivation for this endeavor is that 

learning-based adaptive AI systems generally converge to a small set of tactics 

which prove effective against opponents but lack diversity: thus, the player may 

end up repeatedly facing NPCs executing roughly the same strategies. The authors 

mention NPC diversity as a significant factor in rendering game AI engaging, and 

they set out to create adaptive game AI exhibiting behavior that is both effective 

and diverse.  

  Their game characters are controlled by rule-based scripts, while, in my work, 

game characters are controlled by plans generated through AI planning techniques 

of which learning is not a component. In their work, the fitness function evaluating 

the learned scripts is modified so as to reward script diversity: this has similarities 
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to the use of the composite evaluation criterion including a diversity component in 

my work.  

  Goal-oriented action planning (Orkin, 2003) consists of endowing game 

characters with the ability to conduct real-time planning in order to achieve their 

goals. This makes these characters better adaptable to changeable environment 

conditions than characters acting out hardcoded behavior. It also relieves the game 

designer of the effort of encoding behavior scripts for each conceivable situation 

that the character might encounter. While not specifically using plan-diversity-

enhancing techniques, Orkin attains character diversity as a welcome side-effect of 

allowing his characters the autonomy of pursuing goals through variable plans, 

rather than acting according to a hardcoded script. 

  Finally, I will list several more authors who use planning techniques in 

computer games, without diversity necessarily being a central factor (although, as 

seen above, the use of planning techniques in games can serendipitously lead to 

game diversity). Case-based planning for game environments has been 

demonstrated, among others, by Fairclough (2004) and Ontañón et al. (2010). Real-

time planning has been demonstrated in a game environment by Bartheye and 

Jacopin (2009). While I do not address real-time planning herein, the presented 

character-diversity techniques could conceivably be applied in that context as well. 
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9.5 Comparative Studies of First-Principles Planning and 

Adaptation-based Planning 

While this is the first work comparing first-principles planning and adaptation-

based planning from the point of view of the diversity of the generated solutions, 

there have been numerous studies comparing the two approaches based on other 

criteria. First of all, it should be noted that case-based planning is not the only 

adaptation-based planning approach. By adaptation-based planning, I refer to any 

approach to planning which relies on information gathered in previous planning 

processes (be it the actual solutions themselves or information on how they were 

generated) to create solutions to new problems. Plan repair (as described in Chapter 

9.2) is an example of adaptation-based planning.  

  In terms of planning efficiency, advantages of adaptation-based planning  over 

planning from scratch have been demonstrated, among others, by Veloso (1994), 

Gerevini and Serina (2000, 2010), and van der Krogt and de Weerdt (2005), and 

proved formally by Au, Muñoz-Avila, and Nau (2002), and Kuchibatla and Muñoz-

Avila (2006). Fox et al. (2006) demonstrate advantages of adapting available plans 

(over replanning from scratch) in terms of plan stability, which is a measure of how 

many actions in the source plan are revised; the fewer revised actions, the more 

stable the planning algorithm.  

  Initially, Nebel and Koehler (1995) showed, through complexity analysis, that 

certain formulations of the plan adaptation problem are more difficult than first-
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principles planning. If this were true of all variants of the problem, it would call 

into question the very usefulness of the plan-adaptation approach to planning. 

However, experimental results seemed to be repeatedly contradicting this 

conclusion by showing that adapting previously-generated plans can, in practice, 

lead to increases in efficiency over planning from scratch. The explanation (Au, 

Muñoz-Avila, and Nau, 2002) is that the assessment of Nebel and Koehler referred 

to a very restrictive formulation of the plan-adaptation problem (called 

conservative). This formulation is based on the assumption that the modifications 

made to the initial solution in order to obtain a new solution are minimal (i.e. it is 

guaranteed that as much as possible from the preexisting solution will be reused). 

As pointed out by Au, Muñoz-Avila, and Nau (2002), actual implemented 

adaptation-based planning systems are not conservative. 

  That efficiency gains can, in practice, be attained through adaptation-based 

planning approaches has been shown repeatedly.  

  Veloso (1994) describes the planning system PRODIGY/ANALOGY, which 

combines derivational-analogy case-based planning with first-principles planning 

techniques. The adaptation-based enhancements reusing information from previous 

planning processes are shown to produce an increase in efficiency over the base 

first-principles planner. 

  Gerevini and Serina (2000, 2010) propose a plan repair method based on 

“replanning windows”. A replanning window is used to isolate a portion of the 
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source plan that contains inconsistencies with regard to the new planning 

requirements, e.g. unsatisfied preconditions or unfulfilled new goals. Each 

replanning window is treated as a separate planning problem and solved using first-

principles planning techniques. The goal of each such problem is to achieve either 

the preconditions of the action immediately following its corresponding window, or 

the actual goal of the repaired plan. After being generated, the solution plans for the 

problems corresponding to the replanning windows are inserted at the appropriate 

position in the source plan, thus obtaining the adapted plan. This adaptation-based 

approach is shown to be considerably faster than planning from scratch. 

  van der Krogt and de Weerdt (2005) propose an approach to plan repair which 

uses heuristic-based planning techniques. In a manner reminiscent of 

transformational adaptation in case-based planning, plans are repaired by removing 

and adding actions. Removal and addition is achieved through heuristic planning, 

with heuristic functions being used to assess the value of a removal or an addition. 

This approach to plan repair is experimentally found to be faster than planning 

from scratch in most instances.  

  In addition to work like that described above, which shows the advantages of 

plan adaptation through experimental evaluation of plan-adaptation-based systems, 

formal studies have also been conducted to show the same through complexity 

analysis. 
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  Au, Muñoz-Avila, and Nau (2002) show that derivational-analogy case-based 

planning is not conducted under the conservative assumption of Nebel and Koehler 

(1995) and that it actually is, in the worst case, as difficult as first-principles 

planning. They also show that the search space for derivational-analogy systems is 

not larger than that of first-principles classical planners, and, in certain situations, it 

can be exponentially smaller. To conduct this study, they first describe a general 

framework for derivational analogy, which is then used alongside a similar 

preexisting framework for classical planning (Kambhampati and Srivastava, 1995) 

to compare the two planning approaches. 

  A similar result, this time in the context of transformational-analogy case-

based planning systems, was published by Kuchibatla and Muñoz-Avila (2006). 

Similarly to Au, Muñoz-Avila, and Nau (2002), they start by defining a general 

framework for transformational-analogy case-based planning, then, using this 

framework, they conduct an analysis showing that transformational-analogy is not 

conservative: hence, the complexity analysis of Nebel and Kohler (1995) does not 

apply to it. 

  While the previously-described comparative studies focus on planning 

efficiency and related concerns, Fox et al. (2006) demonstrate advantages of 

adapting available plans over planning from scratch in terms of plan stability.  

  Stability is defined as a measure of the difference between a source plan and a 

target plan. It is presented as a planning-technique evaluation metric for problem 
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instances in which one is forced to make modifications to a preexisting source plan, 

but there is a preference toward target plans which are as similar as possible to the 

source one. As previously explained, the authors implement a plan-repair technique 

using a modified version of the heuristic-search planner LPG (Gerevini, Saetti, & 

Serina 2003). It is shown that the proposed form of plan repair is characterized by 

higher stability than creating new plans from scratch using the regular version of 

LPG. Advantages in terms of planning time and solution quality (with the 

adaptation of high-quality source plans being likely to result in high-quality target 

plans) are also shown.    
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10  Conclusion and Future Work 

This work presents a general framework for diversity-aware Artificial Intelligence 

Planning.  

The framework is based on iterative generation of diverse solutions using 

distance metrics. The objective that this framework is intended to fulfill is that of 

generating multiple diverse solutions to the same planning problem. This is 

achieved by repeatedly generating solutions based on a composite candidate 

solution evaluation criterion (Equation 1, repeated below for convenience). This 

evaluation criterion takes into account both how promising the candidate solution 

looks in its own right (SolAdequacy) and how high its potential for contributing to 

the diversity of the final solution-set is judged to be (RelDiv). At the basis of this 

estimation of diversity are solution distance metrics, measures of the dissimilarity 

between two solutions. 

 

                                                       (1) 

 

It has been shown that distance metrics can be quantitative or qualitative. 

Quantitative distance metrics are domain-independent, with a typical such 

metric being computed as the number of plan elements (e.g., actions) which appear 
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in strictly one of the compared plans. Quantitatively-diverse solutions are not 

guaranteed to be meaningfully diverse.  

Qualitative distance metrics incorporate domain-specific knowledge, which 

they use to compute the degree of meaningful dissimilarity between solutions. 

In practice, implementations of the general framework do not have to be built 

from scratch, as they can conveniently make use of regular, non-diverse planning 

systems. These systems are modified so as to use diversity considerations at 

planning time (i.e. the relative diversity component is added to their candidate-

solution-evaluation criterion). The solution-adequacy component of the composite 

evaluation criterion is provided by the regular planner itself. 

This approach is taken herein, when using the general framework as the basis 

for three diversity-aware planning systems: DivFF (a diverse heuristic-search 

planner for deterministic planning problems), DivCBP (a diverse case-based 

planner for deterministic planning problems), and DivNDP (a diverse first-

principles heuristic-search planner for nondeterministic planning problems).  

The three systems represent three different planning-technique/planning-

problem-type combinations. The planning techniques are heuristic-search planning 

and case-based planning. The problem types are deterministic planning problems 

(wherein it is assumed that any action may have only one given outcome) and 

nondeterministic planning problems (defined under the assumption that actions 

may have multiple possible outcomes).  
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DivFF, DivCBP, and DivFF are all flexible with regard to the type of distance 

metric they use to compare solutions, and have been tested with both quantitative 

and qualitative solution distance metrics. 

In terms of novelty, DivCBP is the first diverse case-based planning system; 

DivFF is the first diverse heuristic-search planning system demonstrated with both 

quantitative and qualitative distance metrics, and, while a formulation of the 

diversity task different from the one pursued herein has been addressed in 

probabilistic nondeterministic planning, DivNDP is the first non-probabilistic 

nondeterministic planner capable of generating diverse sets of solutions. All 

systems are the first of their kind tested by running the solutions in the environment 

they are intended for (a real-time strategy game). 

A comparison between DivFF and DivCBP (the two systems are comparable 

because they both generate solutions to deterministic planning problems) was 

conducted, in order to determine whether any one of them is better able to generate 

diverse sets of plans and, if so, why. This comparison between DivCBP and DivFF 

contributes to the body of comparative studies between first-principles and 

adaptation-based planning systems. 

Potential applications for diverse-plan/policy-generating systems include, as 

shown in related work, intrusion-detection, fault-tolerance, and computer games 

and other forms of interactive storytelling (Boddy et al., 2005; Lussier et al., 2007; 

Guilherme da Silva, Ciarlini, and Siqueira, 2010). 



www.manaraa.com

190 
 
 

 

A diverse-plan/policy application demonstrated herein is that of making non-

player characters in a computer game not designed with character variety in mind 

appear diverse in terms of their personality traits. Character behavior can be 

represented in terms of plans or policies (Orkin, 2003), hence plan/policy diversity 

can be at the basis of character diversity. This is demonstrated both in deterministic 

planning, using DivCBP, and in nondeterministic planning, using DivNDP. Plans 

and policies representing character behavior simulating personality variety are 

generated using solution-distance metrics defined so as to detect indicators of 

different personality traits. 

The experimental evaluation was conducted not only on synthetic planning 

domains, but also on a planning domain based on the real-time strategy game 

Wargus. DivFF, DivCBP, and DivNDP were all tested both with quantitative and 

with qualitative distance metrics, and assessed by running the solutions they 

generate in the game environment they were intended for, and observing behavior 

and results thus obtained. This is an important contribution, as, in related work on 

solution diversity in planning, diversity is assessed by analyzing the plans 

themselves, without actually running these plans (Myers and Lee, 1999; Srivastava 

et al., 2007; Nguyen et al, 2012; Eiter et al., 2011). The results of the experimental 

evaluation are summarized below. 

 Qualitatively-diverse solutions always produce markedly more diverse 

behavior, when run in the game environment, than quantitatively-diverse solutions. 
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Moreover, quantitatively-diverse plans/policies are often inflated with actions not 

necessary for reaching the goal, added solely for the purpose of increasing their 

distance from one another, thus making the solution set more diverse. On the other 

hand, inflation is not always counter-productive: it was shown how qualitative 

distance metrics can be used to encourage meaningful (rather than random) 

inflation that makes a policy representing a storyline more eventful. 

 DivCBP generates sets of solutions of a higher diversity than those generated 

by DivFF on the same problems, with the same distance metric. Perhaps the most 

important reason for this is the fact that the search space of DivFF is limited 

through heuristic-based selections specific to heuristic-search planning. While 

boosting efficiency, these limitations severely restrict the opportunities for finding 

diverse solutions by rendering the search space itself unvaried. These observations 

were put to use when designing DivNDP: in order to ensure its capability to 

produce highly diverse plans sets, preliminary filtering and other search space 

limitations were eliminated. 

 All described and evaluated planning systems successfully generate sets of 

demonstrably diverse solutions to planning problems, using varied criteria for 

assessing solution dissimilarity. 
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10.1  Future Work 

Future work possibilities are manifold. They include extending the diverse planning 

framework and enhancing it with other Artificial Intelligence techniques, such as 

machine learning. 

  In this work, the diversity of generated solutions has been the primary concern. 

However, one would not want to encourage diversity at the detriment of solution 

quality, i.e. generate a set of solutions which are diverse, but of such low average 

quality as to make most of them unusable. An immediate difficulty in taking 

quality considerations into account when generating diverse solutions lies in the 

fact that assessing planning solution quality is in itself no easy matter. The 

traditional approach of considering lower-size solutions to be of higher quality than 

larger ones is not guaranteed to be meaningful in all domains: a longer plan is not 

always less preferable than a shorter one (e.g. in an aerial transportation domain, a 

longer plan including more security measures may be preferable due to lower risk 

levels). On the other hand, in dynamic domains like Wargus, it is difficult to assess 

the quality of the solutions based on their low-level structure before actually 

running them in the environment (whether a plan will succeed or not will strongly 

depend on exterior factors such as characteristics of the map not known at planning 

time).  

  A possible approach that could be taken is to define qualitative measures of 

solution quality similarly to how qualitative measures for plan comparison have 
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been defined herein. The composite solution-generation criterion can be easily 

extended to include this additional component, as in Equation 26 below (where α + 

β + γ = 1): 

 

                      

                                                            (26) 

 

  Such an approach has been taken by Srivastava et al. (2007), who make use of 

the quality considerations specific to LPG. 

  The general framework could also be extended by including planning 

preferences (Nguyen et al., 2012) within it, so that the generated sets of solutions 

are diverse only insofar as it is possible within the specific requirements of users or 

various other restrictions.  

  Another question is whether it would be possible to produce good solution 

distance metrics automatically. This might be achieved through machine-learning 

techniques, which have been previously employed for learning measures of 

similarity in various fields, such as case-based reasoning (Ricci and Avesani, 1995) 

and search and classification tasks in social media (Becker, Naaman, and Gravano, 

2010). Learning distance metrics automatically might be a way of addressing the 
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difficulties humans sometimes encounter in identifying meaningful differences 

between items (Dunbar, 2001). 

  This work focuses on algorithms for diverse-plan generation and on two large 

categories of distance metrics (quantitative and qualitative), but not on creating 

good qualitative distance metrics for specific application domains, nor on issues 

pertaining to encoding complex distance metrics efficiently. Consequently, the 

qualitative distance metrics presented herein are relatively simple. Future work 

could, therefore, focus on building complex qualitative distance metrics and 

perhaps testing these with implementations of the diverse planning framework built 

on top of highly-efficient planning systems. 

  I have addressed diversity in automated planning conducted exclusively by 

artificially intelligent systems, not within mixed-initiative systems based on 

human/AI collaboration. Diversity-aware mixed-initiative planning is, therefore, 

another future research direction: such systems could assist human planners in 

keeping track of varied possibilities in domains characterized by vast solution 

spaces. While the artificially intelligent collaborator in a mixed-initiative context 

may not have the freedom to generate complete diverse solutions by itself, it can 

still propose diverse partial solutions matching goals or subgoals set by the human 

collaborator. 

  While diversity in interactive storytelling has been touched upon briefly herein, 

merely as a demonstration of a possible application of diverse planning techniques, 
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there are plentiful possibilities for more work on diverse interactive storytelling. 

One challenge is that of enforcing diversity within the fixed landmarks employed 

by some interactive-storytelling planning systems (Porteous, Cavazza, and Charles, 

2010b). This is related to diverse planning with user preferences/restrictions as 

mentioned above. 

  Finally, as there have so far been no attempts to solve nondeterministic 

planning problems through case-based approaches to planning, both 

nondeterministic case-based planning and diverse nondeterministic case-based 

planning remain open research directions. 

  In addition to these high-level extensions of the diverse planning framework 

and research directions which, while related, depart significantly from this work, 

the actual implemented systems presented herein would also benefit from various 

enhancements.  

  Firstly, in order to enable DivNDP to produce highly diverse solution sets, 

JavaFF (the classical planner DivNDP is based on) has been modified so as to only 

use the complete search algorithm that normally comes into play only after a more 

efficient, incomplete algorithm has failed. This has dramatically improved diversity 

in the experimental evaluation. On the domain it was tested on, it also did not cause 

any efficiency issues. This, however, may not be the case on other application 

domains. It might, therefore, be necessary to devise methods of maintaining 

efficiency while using DivNDP with complete search.  
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  One possibility of achieving balance between result diversity and planning 

efficiency is partially inspired by the Adaptive Selection algorithm of McGinty and 

Smyth, 2003 (see Chapter 10.1.1). Based on how difficult it seems to find a 

solution, a decision could be made during the planning process whether to keep 

using the composite criterion or to switch to the regular FF heuristic. It would also 

be possible to maintain a diversity threshold so that, once the partial solution has 

reached the threshold, the composite criterion is abandoned, and the system 

switches to the regular solution-adequacy criterion. On the other hand, re-

computing this diversity value at each planning stage might itself prove costly. 

  Efficiency has not been a primary objective in this work, and the JavaFF 

planner, which the implementations of DivFF and DivNDP both use, is not a 

particularly efficient implementation of FF, as it is intended primarily for 

pedagogical purposes, not for tasks requiring high efficiency. However, the 

presented framework for diverse heuristic planning is not planner-specific, hence 

the modifications it describes can be integrated within any heuristic planner. It 

would, therefore, be possible to test the proposed methods with state-of-the-art, 

highly-efficient planners, such as LAMA (Richter and Westphal, 2010). 

  In case-based planning, DivCBP introduces diversity at the retrieval stage. 

Another possibility would be to do so at the reuse stage, by modifying the 

adaptation algorithms, rather than the retrieval criterion, so as to take relative 
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diversity into account. This might be advantageous when using large case bases, 

which make it costly to compute relative diversity for every case-base entry.  

  Furthermore, while DivCBP is a transformational-analogy diverse case-based 

planner, it would be interesting to investigate whether it would be feasible to 

introduce diversity in the context of derivational-analogy case-based planning as 

well. This might prove challenging, as these types of planners generally attempt to 

re-run previous planning processes as closely as possible to the recorded trace. 

Diversity could perhaps be introduced when generating those portions of plans for 

which retrieved derivational traces cannot be used, and which have to be produced 

from scratch. 

 

  Within the skill panoply of artificial intelligences, this work contributes to the 

ability to come up with several different courses of action to solve a problem. This 

skill has as prerequisite the more general one of discerningly comparing between 

courses of action: in the AI world, comparing things is not an ability to be taken for 

granted, but one to be gradually conquered.  

  Agents equipped with diverse-planning skills could keep us (and themselves) 

supplied with alternative approaches to fall back on when things do not turn out as 

anticipated; point out diverse, potentially surprising ways in which our data may be 

at risk of intrusion; act as computer-game characters who, although not possessed 

of real personalities, can exhibit varied behavior roughly mimicking personality 
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variation; point out options we may have overlooked when collaborating with us on 

a planning task. There are many ways in which they could expand and borrow from 

their AI relatives’ abilities (a valuable new skill would be that of learning by 

themselves how to differentiate between different plans, making them more 

autonomous and helpful in new ways). Irrespective of the techniques used to attain 

it, there will always be room for diversity in Artificial Intelligence.  
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